Experimental Results for Stackelberg Scheduling Strategies

  • A. C. Kaporis
  • L. M. Kirousis
  • E. I. Politopoulou
  • P. G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)


In large scale networks users often behave selfishly trying to minimize their routing cost. Modelling this as a noncooperative game, may yield a Nash equilibrium with unboundedly poor network performance. To measure this inefficacy, the Coordination Ratio or Price of Anarchy (PoA) was introduced. It equals the ratio of the cost induced by the worst Nash equilibrium, to the corresponding one induced by the overall optimum assignment of the jobs to the network. On improving the PoA of a given network, a series of papers model this selfish behavior as a Stackelberg or Leader-Followers game.

We consider random tuples of machines, with either linear or M/M/1 latency functions, and PoA at least a tuning parameterc. We validate a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on tuples with PoAc. NLS experimentally improves on LLF for systems with inherently high PoA, where the Leader is constrained to control low portion α of jobs. This suggests even better performance for systems with arbitrary PoA. Also, we bounded experimentally the least Leader’s portion α 0 needed to induce optimum cost. Unexpectedly, as parameter c increases the corresponding α 0 decreases, for M/M/1 latency functions. All these are implemented in an extensive Matlab toolbox.


Nash Equilibrium Latency Function Optimum Load Noncooperative Game Leader Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anil Kumar, V.S., Marathe, M.V.: Improved Results for Stackelberg Scheduling Strategies. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  3. 3.
    Czumaj, A., Voecking, B.: Tight bounds for worst-case equilibria. In: Proc. SODA 2002 (2002)Google Scholar
  4. 4.
    Czumaj, A.: Selfish Routing on the Internet, Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton (2004)Google Scholar
  5. 5.
    Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost of multicast transmissions. In: Proc. STOC 2000 (2000)Google Scholar
  6. 6.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Golle, P., Leyton-Brown, K., Mironov, I., Lillibridge, M.: Incentives for Sharing in Peer-to-Peer Networks. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, p. 75. Springer, Heidelberg (2001) (full version)Google Scholar
  8. 8.
    Grandhi, S.A., Yates, R.D., Goodman, D.J.: Resource Allocation for Cellular Radio Systems. Proc. IEEE Transactions on Vehicular Technology 46(3), 581–587 (1997)CrossRefGoogle Scholar
  9. 9.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using stackelberg routing strategies. Proc. IEEE/ACM Transactions of Networking (1997)Google Scholar
  10. 10.
    Korilis, Y.A., Lazar, A.A., Orda, A.: The designer’s perspective to noncooperative networks. In: Proc. IEEE INFOCOM 1995 (1995)Google Scholar
  11. 11.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Capacity allocation under noncooperative routing. Proc. IEEE/Transactions on Automatic Control (1997)Google Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 387–396. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Lin, H., Roughgarden, T., Tardos, E.: A Stronger Bound on Braess’s Paradox. In: SODA (2004)Google Scholar
  14. 14.
    Mavronikolas, M., Spirakis, P.: The price of Selfish Routing. In: Proc. STOC 2001 (2001)Google Scholar
  15. 15.
    Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)zbMATHGoogle Scholar
  16. 16.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. STOC 1999, pp. 129–140 (1999)Google Scholar
  17. 17.
    Nisan, N.: Algorithms for selfish agents: Mechanism design for distributed computation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 1. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Osborne, M.J., Rubinstein, A.: A course in Game Theory. MIT Press, CambridgeGoogle Scholar
  19. 19.
    Owen, G.: Game Theory, 3rd edn. Academic Press, Orlando (1995)Google Scholar
  20. 20.
    Papadimitriou, C.: Game Theory and Mathematical Economics: A Theoratical Computer Scientist’s Introduction. In: Proc. FOCS 2001 (2001)Google Scholar
  21. 21.
    Papadimitriou, C.: Algorithms, Games, and the Internet. In: Proc. STOC 2001, pp. 749–753 (2001)Google Scholar
  22. 22.
    Roughgarden, T.: The price of anarchy is independent of the network topology. In: Proc. STOC 2002, pp. 428–437 (2002)Google Scholar
  23. 23.
    Roughgarden, T.: Stackelberg scheduling strategies. In: Proc. STOC 2001, pp. 104–113 (2001)Google Scholar
  24. 24.
    Roughgarden, T., Tardos, E.: How bad is Selfish Routing? In: Proc. FOCS 2000, pp. 93–102 (2000)Google Scholar
  25. 25.
    Roughgarden, T.: Designing networks for selfish users is hard. In: Proc. FOCS 2001, pp. 472–481 (2001)Google Scholar
  26. 26.
    von Stackelberg, H.: Marktform aund Gleichgewicht. Spiringer, Heidelberg (1934)Google Scholar
  27. 27.
    Yaiche, H., Mazumdar, R., Rosenberg, C.: Distributed algorithms for fair bandwidth allocation in broadband networks. In: Proc. INFOCOM 2000 (2000)Google Scholar
  28. 28.
    Yaiche, H., Mazumdar, R., Rosenberg, C.: A game-theoretic framework for bandwidth allocation and pricing in broadband networks. Proc. the IEEE/ACM Transactions on Networking 8(5), 667–678 (2000)CrossRefGoogle Scholar
  29. 29.
    Optimization Toolbox for use with MATLAB, User’s Guide, MathWorksGoogle Scholar
  30. 30., Stackelberg Strategies Toolbox

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. C. Kaporis
    • 1
  • L. M. Kirousis
    • 1
    • 2
  • E. I. Politopoulou
    • 1
    • 2
  • P. G. Spirakis
    • 1
    • 2
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasGreece
  2. 2.Research Academic Computer Technology InstitutePatrasGreece

Personalised recommendations