Advertisement

GRASP with Path-Relinking for the Weighted Maximum Satisfiability Problem

  • Paola Festa
  • Panos M. Pardalos
  • Leonidas S. Pitsoulis
  • Mauricio G. C. Resende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)

Abstract

A GRASP with path-relinking for finding good-quality solutions of the weighted maximum satisfiability problem (MAX-SAT) is described in this paper. GRASP, or Greedy Randomized Adaptive Search Procedure, is a randomized multi-start metaheuristic, where at each iteration locally optimal solutions are constructed, each independent of the others. Previous experimental results indicate its effectiveness for solving weighted MAX-SAT instances. Path-relinking is a procedure used to intensify the search around good-quality isolated solutions that have been produced by the GRASP heuristic. Experimental comparison of the pure GRASP (without path-relinking) and the GRASP with path-relinking illustrates the effectiveness of path-relinking in decreasing the average time needed to find a good-quality solution for the weighted maximum satisfiability problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop scheduling. Parallel Computing 29, 393–430 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aiex, R.M., Resende, M.G.C., Pardalos, P.M., Toraldo, G.: GRASP with path relinking for three-index assignment. INFORMS J. on Computing (2005) (In press)Google Scholar
  3. 3.
    Asano, T.: Approximation algorithms for MAX-SAT: Yannakakis vs. Goemans-Williamson. In: 5th IEEE Israel Symposium on the Theory of Computing and Systems, pp. 24–37 (1997)Google Scholar
  4. 4.
    Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-SAT. ACM Journal of Experimental Algorithms 2(2) (1997)Google Scholar
  5. 5.
    Battiti, R., Protasi, M.: Approximate algorithms and heuristics for the MAX-SAT. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp. 77–148. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  6. 6.
    Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J., Friesen, D., Zheng, H.: Tight bound on johnson’s algorithm for MAX-SAT. In: Proceedings of the 12th Annual IEEE Conference on Computational Complexity, pp. 274–281 (1997)Google Scholar
  8. 8.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)Google Scholar
  9. 9.
    Feige, U., Goemans, M.X.: Approximating the value of two proper proof systems, with applications to MAX-2SAT and MAX-DICUT. In: Proceeding of the Third Israel Symposium on Theory of Computing and Systems, pp. 182–189 (1995)Google Scholar
  10. 10.
    Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Operations Research 42, 860–878 (1994)zbMATHCrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for SAT. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 28–33 (1993)Google Scholar
  13. 13.
    Glover, F.: Tabu search and adaptive memory programming: Advances, applications and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  14. 14.
    Goemans, M.X., Williamson, D.P.: A new \(\frac{3}{4}\) approximation algorithm for the maximum satisfiability problem. SIAM Journal on Discrete Mathematics 7, 656–666 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of Association for Computing Machinery 42(6), 1115–1145 (1995)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hastad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–859 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9, 256–278 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  20. 20.
    Karloff, H., Zwick, U.: A \(\frac{7}{8}\)-approximation algorithm for MAX-3SAT. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, pp. 406–415 (1997)Google Scholar
  21. 21.
    Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing 11, 44–52 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    Resende, M.G.C., Feo, T.A.: A GRASP for Satisfiability. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, coloring, and Satisfiability: Second DIMACS Implementation Challenge, 26th edn. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 499–520. American Mathematical Society, Providence (1996)Google Scholar
  23. 23.
    Resende, M.G.C., Pitsoulis, L.S.: Greedy randomized adaptive search procedures. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 168–183. Oxford University Press, Oxford (2002)Google Scholar
  24. 24.
    Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solutions of weighted MAX-SAT problems using GRASP. In: Du, D.-Z., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications, pp. 393–405. American Mathematical Society, Providence (1997)Google Scholar
  25. 25.
    Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Fortran subroutines for computing approximate solutions of weighted MAX-SAT problems using GRASP. Discrete Applied Mathematics 100, 95–113 (2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    Resende, M.G.C., Ribeiro, C.C.: A GRASP with path-relinking for private virtual circuit routing. Networks 41, 104–114 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Resende, M.G.C., Ribeiro, C.C.: GRASP and path-relinking: Recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS Journal on Computing 14, 228–246 (2002)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability instances. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 440–446 (1992)Google Scholar
  30. 30.
    Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 533–555. American Mathematical Society, Providence (1996)Google Scholar
  31. 31.
    Trevisan, L.: Approximating satisfiable satisfiability problems. Algorithmica 28(1), 145–172 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Yannakakis, M.: On the approximation of maximum Satisfiability. In: Proceedings of the Third ACM-SIAM Symposium on Discrete Algorithms, pp. 1–9 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paola Festa
    • 1
  • Panos M. Pardalos
    • 2
  • Leonidas S. Pitsoulis
    • 3
  • Mauricio G. C. Resende
    • 4
  1. 1.Department of Mathematics and ApplicationsUniversity of Napoli Federico IINapoliItaly
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Mathematical and Physical Sciences, School of EngineeringAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Internet and Network Systems Research CenterAT&T Labs ResearchFlorham ParkUSA

Personalised recommendations