A Cut-Based Heuristic to Produce Almost Feasible Periodic Railway Timetables

  • Christian Liebchen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)


We consider the problem of satisfying the maximum number of constraints of an instance of the Periodic Event Scheduling Problem (Pesp). This is a key issue in periodic railway timetable construction, and has many other applications, e.g. for traffic light scheduling.

We generalize two (in-) approximability results, which are known for Maximum-K-Colorable-Subgraph. Moreover, we present a deterministic combinatorial polynomial time algorithm. Its output violates only very few constraints for five real-world instances.


Span Tree Local Improvement Light Schedule Span Ratio Feasible Timetable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Karger, D., Karpinski, M.: Polynomial Time Approximation Schemes for Dense Instances of NP-hard Problems. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 284–293. ACM Press, New York (1995)Google Scholar
  2. 2.
    CPLEX 8.1  ILOG SA, France (2004),
  3. 3.
    Crescenzi, P., Kann, V.: A compendium of NP optimization problems (2005),
  4. 4.
    Daduna, J.R., Voß, S.: Practical Experiences in Schedule Synchronization. In: Daduna, J.R., et al. (eds.) Computer-Aided Transit Scheduling— Proceedings of the Sixth International Workshop on Computer-Aided Scheduling of Public Transport. LNEMS, vol. 430, pp. 39–55. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Engelhardt-Funke, O., Kolonko, M.: Analysing stability and investments in railway networks using advanced evolutionary algorithms. International Transactions in Operational Research 11, 381–394 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Goemans, M., Williamson, D.: 878-Approximation Algorithms for Max Cut and Max 2Sat. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 422–431. ACM Press, New York (1994)Google Scholar
  7. 7.
    Hassin, R.: A Flow Algorithm for Network Synchronization. Operations Research 44, 570–579 (1996)zbMATHCrossRefGoogle Scholar
  8. 8.
    Liebchen, C.: Der Berliner U-Bahn Fahrplan 2005: Realisierung eines mathematisch optimierten Angebotskonzepts. In: Tagungsbericht Heureka 2005 Optimierung in Transport und Verkehr, FGSV (2005) (in German)Google Scholar
  9. 9.
    Liebchen, C., Möhring, R.H.: The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables—and Beyond. Preprint 020/2004, Mathematical Institute, TU Berlin, Germany (2004)Google Scholar
  10. 10.
    Liebchen, C., Proksch, M., Wagner, F.H.: Performance of Algorithms for Periodic Timetable Optimization. Preprint 021/2004, Mathematical Institute, TU Berlin, Germany (2004)Google Scholar
  11. 11.
    Lindner, T.: Train Schedule Optimization in Public Rail Transport. Ph.D. Thesis, TU Braunschweig, Germany (2000)Google Scholar
  12. 12.
    Martin, A., Achterberg, T., Koch, T.: MIPLIB 2003 (2003),
  13. 13.
    Nachtigall, K., Voget, S.: A genetic algorithm approach to periodic railway synchronization. Computers and Operations Research 23, 453–463 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Odijk, M.: Railway Timetable Generation. Ph.D. Thesis, TU Delft, The Netherlands (1997)Google Scholar
  15. 15.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation, and Complexity Classes. Journal of Computer and System Sciences 43, 425–440 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Peeters, L.: Cyclic Railway Timetable Optimization. Ph.D. Thesis, Erasmus Universiteit Rotterdam, The Netherlands (2003)Google Scholar
  17. 17.
    Schrijver, A., Steenbeek, A.: Dienstregelingontwikkeling voor Nederlandse Spoorwegen N.V.—Rapport Fase 1. Report, CWI, The Netherlands. In: Dutch (1993)Google Scholar
  18. 18.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics 2, 550–581 (1989)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Vitanyi, P.M.B.: How Well Can a Graph be n-Colored? Discrete Mathematics 34, 69–80 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christian Liebchen
    • 1
  1. 1.Institut für MathematikTU BerlinBerlinGermany

Personalised recommendations