Advertisement

A Framework for Probabilistic Numerical Evaluation of Sensor Networks: A Case Study of a Localization Protocol

  • Pierre Leone
  • Paul Albuquerque
  • Christian Mazza
  • Jose Rolim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)

Abstract

In this paper we show how to use stochastic estimation methods to investigate the topological properties of sensor networks as well as the behaviour of dynamical processes on these networks. The framework is particularly important to study problems for which no theoretical results are known, or can not be directly applied in practice, for instance, when only asymptotic results are available. We also interpret Russo’s formula in the context of sensor networks and thus obtain practical information on their reliability. As a case study, we analyse a localization protocol for wireless sensor networks and validate our approach by numerical experiments. Finally, we mention three applications of our approach: estimating the number of pivotal sensors in a real network, minimizing the number of such sensors for robustness purposes during the network design and estimating the distance between successive localized positions for mobile sensor networks.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Localization Process Localize Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Goldenberg, D., Yang, Y.R.: On the Computational Complexity of Sensor Network Localization. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 32–44. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Blum, J.R.: Approximation Methods which Converge with Probability One. Ann. Math. Stat. 25(2), 382–386 (1954)zbMATHCrossRefGoogle Scholar
  4. 4.
    Booth, L., Bruck, J., Franceschetti, M., Meester, R.: Covering Algorithms, Continuum Percolation and the Geometry of Wireless Networks. Ann. Appl. Prob. 13(2), 722–741 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bulusu, N., Heidmann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, Special Issue on Smart Spaces and Environments 7(5), 28–34 (2000)Google Scholar
  6. 6.
    Burkholder, D.L.: On a class of stochastic approximation processes. Ann. Math. Stat. 27, 1044–1059 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chayes, J.T., Chayes, L.: The mean-field bound for the order of parameter of Bernoulli percolation. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems. IMA, Math. Appl. Minneapolis, Minn., 1984–1985, vol. 8, pp. 49–71. Springer, New York (1987)Google Scholar
  8. 8.
    Diaz, J., Petit, J., Serna, M.: A random graph model for optical networks of sensors. IEEE Transactions on Mobile Computing 2(3), 186–196 (2003)CrossRefGoogle Scholar
  9. 9.
    Diaz, J., Petit, J., Serna, M.: Evaluation of Basic Protocols for Optical Smart Dust Networks. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Grimmett, G.: Percolation. A Series of Comprehensive Studies in Mathematics, 2nd edn., vol. 321. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Leone, P., Nikoletseas, S., Rolim, J.: An adaptative Blind Algorithm for Energy Balanced Data Propagation in Wireless Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 35–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Meester, R., Roy, R.: Continuum percolation. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  13. 13.
    Motawni, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)Google Scholar
  14. 14.
    Nevel’son, M.B., Has’minskii, R.Z.: Stochastic Approximation and Recursive Estimation. Translation of Mathematical Monographs. American Math. Soc. 47 (1976)Google Scholar
  15. 15.
    Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Russo, L.: A note on percolation. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 56, 229–237 (1981)zbMATHCrossRefGoogle Scholar
  17. 17.
    Srivastava, M.: Part II: Sensor Node Platforms & Energy Issues. In: Tutorial on Wireless Sensor Networks, Mobicom (2002), Avalaible at, http://nesl.ee.ucla.edu/tutorials/mobicom02
  18. 18.
    Srivastava, M.: Part III: Time & Space Problems in Sensor Networks. In: Tutorial on Wireless Sensor Networks, Mobicom (2002), Avalaible at, http://nesl.ee.ucla.edu/tutorials/mobicom02
  19. 19.
    Venter, J.H.: An extension of the Robbins-Monro procedure. Ann. Math. Stat. 38, 181–190 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chatzigiannakis, I., Spirakis, P., Nikoletseas, S.: Efficient and Robust Protocols for Local Detection and Propagation in Smart Dust Networks. ACM Mobile Networks and Applications 10(1-2), 133–149 (2005)CrossRefGoogle Scholar
  21. 21.
    Chatzigiannakis, I., Dimitriou, T., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: A Comparative Study of Protocols for Efficient Data Propagation in Smart Dust Networks. Parallel Processing Letters 13(4), 615–627 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A Probabilistic Algorithm for Efficient and Robust Data Propagation in Smart Dust Networks. In: Proc. of the 5th European Wireless Conf. on Mobile and Wireless Systems beyond 3G, pp. 344–350 (2004)Google Scholar
  23. 23.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic Routing without Location Information. In: MOBICOM 2003, pp. 96–108 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pierre Leone
    • 1
    • 2
  • Paul Albuquerque
    • 2
  • Christian Mazza
    • 3
  • Jose Rolim
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaGeneva 4Switzerland
  2. 2.LIIEcole d’Ingénieurs de Genève, HES-SOGenevaSwitzerland
  3. 3.Mathematics DepartmentUniversity of GenevaGeneva 4Switzerland

Personalised recommendations