Advertisement

Partitioning Graphs to Speed Up Dijkstra’s Algorithm

  • Rolf H. Möhring
  • Heiko Schilling
  • Birk Schütz
  • Dorothea Wagner
  • Thomas Willhalm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3503)

Abstract

In this paper, we consider Dijkstra’s algorithm for the point-to-point shortest path problem in large and sparse graphs with a given layout. In [1], a method has been presented that uses a partitioning of the graph to perform a preprocessing which allows to speed-up Dijkstra’s algorithm considerably.

We present an experimental study that evaluates which partitioning methods are suited for this approach. In particular, we examine partitioning algorithms from computational geometry and compare their impact on the speed-up of the shortest-path algorithm. Using a suited partitioning algorithm speed-up factors of 500 and more were achieved.

Furthermore, we present an extension of this speed-up technique to multiple levels of partitionings. With this multi-level variant, the same speed-up factors can be achieved with smaller space requirements. It can therefore be seen as a compression of the precomputed data that conserves the correctness of the computed shortest paths.

Keywords

Short Path Search Space Road Network Target Node Short Path Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Raubal, M., Sliwinski, A., Kuhn, W. (eds.) Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung. IfGI prints, vol. 22, pp. 219–230. Institut für Geoinformatik, Münster (2004)Google Scholar
  2. 2.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. ACM Journal of Experimental Algorithmics 5 (2000)Google Scholar
  4. 4.
    Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest path computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005) (submitted to WEA 2005) CrossRefGoogle Scholar
  6. 6.
    Karypis, G.: METIS: Family of multilevel partitioning algorithms (1995), http://www-users.cs.umn.edu/~karypis/metis/
  7. 7.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal of the ACM (JACM) 24, 1–13 (1977)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge Massachusetts (2001)zbMATHGoogle Scholar
  9. 9.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing archive 20, 359–392 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mehlhorn, K., Näher, S.: LEDA, A platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  11. 11.
    Jung, S., Pramanik, S.: HiTi graph model of topographical road maps in navigation systems. In: Proc. 12th IEEE Int. Conf. Data Eng., pp. 76–84 (1996)Google Scholar
  12. 12.
    Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Technical report, Dept. of Informatics, University of Konstanz, Germany (2003), http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/
  13. 13.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: a * search meets graph theory. Technical Report MSR-TR-2004-24, Microsoft Research (2003), Accepted at SODA (2005)Google Scholar
  14. 14.
    Gutman, R.: Reach-based routing: A new approach to shortest path algortihms optimized for road networks. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proc. Algorithm Engineering and Experiments (ALENEX 2004), pp. 100–111. SIAM, Philadelphia (2004)Google Scholar
  15. 15.
    Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-path computations. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 269–284. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Wagner, D., Willhalm, T.: Drawing graphs to speed up shortest-path computations. In: Proc. 7th Workshop Algorithm Engineering and Experiments (ALENEX 2005). LNCS (2005) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rolf H. Möhring
    • 1
  • Heiko Schilling
    • 1
  • Birk Schütz
    • 2
  • Dorothea Wagner
    • 2
  • Thomas Willhalm
    • 2
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Fakultät für InformatikUniversität KarlsruheKarlsruheGermany

Personalised recommendations