Skip to main content

From Static Code Distribution to More Shrinkage for the Multiterminal Cut

  • Conference paper
Experimental and Efficient Algorithms (WEA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3503))

Included in the following conference series:

Abstract

We present the problem of statically distributing instructions of a common programming language, a problem which we prove equivalent to the multiterminal cut problem.  We design efficient shrinkage techniques which allow to reduce the size of an instance in such a way that optimal solutions are preserved. We design and evaluate a fast local heuristics that yields remarkably good results compared to a well known \(2-\frac{2}{k}\) approximation algorithm. The use of the shrinkage criterion allows us to increase the size of the instances solved exactly, or to augments the precision of any particular heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massart, T., DeWachter, B., Genon, A.: From static code distribution to more shrinkage for the multiterminal cut. Technical Report 007, U.L.B. (December 2004)

    Google Scholar 

  2. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. J. Comput. Syst. Sci. 60(3), 564–574 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chopra, S., Owen, J.H.: Extended formulations for the a-cut problem. Math. Program. 73, 7–30 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Costa, M., Letocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: a survey. European Journal of Operational Research 162(1), 55–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cunningham, W.H.: The optimal multiterminal cut problem. DIMACS series in discrete mathematics and theoretical computer science 5, 105–120 (1991)

    MathSciNet  Google Scholar 

  6. Vohra, R., Bertsimas, D., Teo, C.: Nonlinear formulations and improved randomized approximation algorithms for multicut problems. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 29–39. Springer, Heidelberg (1995)

    Google Scholar 

  7. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  9. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In: Proceedings of the 21st International Colloquium on Automata, Languages and Programming, pp. 487–498. Springer, Heidelberg (1994)

    Google Scholar 

  10. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of the ACM (JACM) 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hogstedt, K., Kimelman, D.: Graph cutting algorithms for distributed applications partitioning. SIGMETRICS Performance Evaluation Review 28(4), 27–29 (2001)

    Article  Google Scholar 

  12. Hollermann, L., Hsu, T.s., Lopez, D.R., Vertanen, K.: Scheduling problems in a practical allocation model. J. Comb. Optim. 1(2), 129–149 (1997)

    Article  MathSciNet  Google Scholar 

  13. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding of minimum multiway cut. In: STOC 1999: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 668–678 (1999)

    Google Scholar 

  14. Naor, J., Zosin, L.: A 2-approximation algorithm for the directed multiway cut problem. SIAM J. Comput. 31(2), 477–482 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rao, M.R., Chopra, S.: On the multiway cut polyhedron. Networks 21, 51–89 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hsu, T.s., Lee, J.C., Lopez, D.R., Royce, W.A.: Task allocation on a network of processors. IEEE Trans. Computers 49(12), 1339–1353 (2000)

    Article  MathSciNet  Google Scholar 

  17. De Wachter, B., Massart, T., Meuter, C.: dsl: An environment with automatic code distribution for industrial control systems. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 132–145. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Wachter, B., Genon, A., Massart, T. (2005). From Static Code Distribution to More Shrinkage for the Multiterminal Cut. In: Nikoletseas, S.E. (eds) Experimental and Efficient Algorithms. WEA 2005. Lecture Notes in Computer Science, vol 3503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427186_17

Download citation

  • DOI: https://doi.org/10.1007/11427186_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25920-6

  • Online ISBN: 978-3-540-32078-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics