Skip to main content

Efficient Pruning Technique Based on Linear Relaxations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3478))

Abstract

This paper extends the Quad-filtering algorithm for handling general nonlinear systems. This extended algorithm is based on the RLT (Reformulation-Linearization Technique) schema. In the reformulation phase, tight convex and concave approximations of nonlinear terms are generated, that’s to say for bilinear terms, product of variables, power and univariate terms. New variables are introduced to linearize the initial constraint system. A linear programming solver is called to prune the domains. A combination of this filtering technique with Box-consistency filtering algorithm has been investigated. Experimental results on difficult problems show that a solver based on this combination outperforms classical CSP solvers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Mathematics of Operations Research 8(2), 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Mathematical Programming 87(1), 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Benhamou, F., McAllester, D., Van-Hentenryck, P.: CLP(intervals) revisited. In: Proceedings of the International Symposium on Logic Programming, pp. 124–138 (1994)

    Google Scholar 

  4. Crama, Y.: Recognition problems for polynomial in 0-1 variables. Mathematical Programming 44, 139–155 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Didrit, O.: Analyse par intervalles pour l’automatique : résolution globale et garantie de problèmes non linéaires en robotique et en commande robuste. PhD thesis, Université Parix XI Orsay (1997)

    Google Scholar 

  6. Dietmaier, P.: The stewart-gough platform of general geometry can have 40 real postures. In: Advances in Robot Kinematics: Analysis and Control, pp. 1–10 (1998)

    Google Scholar 

  7. Floudas, C.A. (ed.): Deterministic global optimization: theory, algorithms and applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  8. Frdric, B., Frdric, G., Laurent, G., Jean-Franois, P.: Revising hull and box consistency. In: Proceedings of ICLP 1999, pp. 230–244. The MIT Press, Cambridge (1999)

    Google Scholar 

  9. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  10. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Reliable Computing 5(3), 213–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lebbah, Y., Rueher, M., Michel, C.: A global filtering algorithm for handling systems of quadratic equations and inequations. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 109–123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Lee, T.-Y., Shim, J.-K.: Elimination-based solution method for the forward kinematics of the general stewart-gough platform. In: Park, F.C., Iurascu, C.C. (eds.) Computational Kinematics, Mai. 20-22 pp. 259–267 (2001)

    Google Scholar 

  13. Lhomme, O.: Consistency techniques for numeric csps. In: Proceedings of IJCAI 1993, pp. 232–238 (1993)

    Google Scholar 

  14. Mackworth, A.: Consistency in networks of relations. Journal of Artificial Intelligence 8(1), 99–118 (1977)

    Article  MATH  Google Scholar 

  15. Michel, C., Lebbah, Y., Rueher, M.: Safe embedding of the simplex algorithm in a csp framework. In: Proc. of 5th Int. Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems, CPAIOR 2003, CRT, pp. 210–220. Universit de Montral (2003)

    Google Scholar 

  16. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Mathematical Programming, Ser. A 99, 283–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rikun, A.: A convex envelope formula for multilinear functions. Journal of Global Optimization 10, 425–437 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Comput. 48, 337–361 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ryoo, H.S., Sahinidis, V.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–139 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ryoo, H.S., Sahinidis, V.: Analysis of bounds for multilinear functions. Journal of Global Optimization 19, 403–424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sahinidis, V., Twarmalani, M.: Baron 5.0 : Global optimisation of mixed-integer nonlinear programs. Technical report, University of Illinois at Urbana-Champaign, Department of Chemical and Biomolecular Engeneering (2002)

    Google Scholar 

  22. Sahinidis, V., Twarmalani, M.: Global optimization of mixed-integer programs: A theoretical and computational study. Mathematical Programming, Ser. A 99, 563–591 (2004)

    Article  MATH  Google Scholar 

  23. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta mathematica vietnamica 22(1), 245–270 (1997)

    MATH  MathSciNet  Google Scholar 

  24. Sherali, H.D.: Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of Global Optimization 12, 267–283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial using a reformulation-linearization technique. Journal of Global Optimization 7, 1–31 (1992)

    Article  MathSciNet  Google Scholar 

  26. Sherali, H.D., Tuncbilek, C.H.: A comparison of two reformulation-linearization technique based on linear programming relaxations for polynomial porgramming problems. Journal of Global Optimization 10, 381–390 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Operations Research Letters 21, 1–9 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89, 459–478 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Van-Hentenryck, P., Mc Allester, D., Kapur, D.: Solving polynomial systems using branch and prune approach. SIAM Journal on Numerical Analysis 34(2), 797–827 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Verschelde, J.: The database of polynomial systems. Technical report (2003), http://www.math.uic.edu/jan/Demo/

  31. Kawata, H., Yamamura, K., Tokue, A.: Interval solution of nonlinear equations using linear programming. BIT 38(1), 186–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lebbah, Y., Michel, C., Rueher, M. (2005). Efficient Pruning Technique Based on Linear Relaxations. In: Jermann, C., Neumaier, A., Sam, D. (eds) Global Optimization and Constraint Satisfaction. COCOS 2003. Lecture Notes in Computer Science, vol 3478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425076_1

Download citation

  • DOI: https://doi.org/10.1007/11425076_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26003-5

  • Online ISBN: 978-3-540-32041-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics