Skip to main content

Univariate and Multivariate Merit Factors

  • Conference paper
Sequences and Their Applications - SETA 2004 (SETA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

Merit factor of a binary sequence is reviewed, and constructions are described that appear to satisfy an asymptotic merit factor of 6.3421... Multivariate merit factor is characterised and recursive Boolean constructions are presented which satisfy a non-vanishing asymptote in multivariate merit factor. Clifford merit factor is characterised as a generalisation of multivariate merit factor and as a type of quantum merit factor. Recursive Boolean constructions are presented which, however, only satisfy an asymptotic Clifford merit factor of zero. It is demonstrated that Boolean functions obtained via quantum error correcting codes tend to maximise Clifford merit factor. Results are presented as to the distribution of the above merit factors over the set of binary sequences and Boolean functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Littlewood, J.E.: Some Problems in Real and Complex Analysis. Heath Mathematical Monographs (1968)

    Google Scholar 

  2. Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory IT 18, 449–450 (1972)

    Article  MATH  Google Scholar 

  3. Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory 28, 543–549 (1982)

    Article  Google Scholar 

  4. Golay, M.J.E.: A new search for skewsymmetric binary sequences with optimal merit factors. IEEE Trans. Inform. Theory 36, 1163–1166 (1990)

    Article  Google Scholar 

  5. Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31, 549–552 (1985)

    Article  MathSciNet  Google Scholar 

  6. Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory IT 34, 161–164 (1988)

    Article  Google Scholar 

  7. Høholdt, T.: The merit factor of binary sequences. In: Pott, A., Kumar, P.V., Helleseth, T., Jungnickel, D. (eds.) Difference Sets, Sequences and their Correlation Properties, Bad Winsheim, August 2–14. Series C: Mathematical and Physical Sciences, pp. 227–237. Kluwer Academic Publishers, Dordrecht (1999), http://arxiv.org/quant-ph/0107106 (long version)

    Google Scholar 

  8. Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37, 617–626 (1991)

    Article  MathSciNet  Google Scholar 

  9. Newman, D.J., Byrnes, J.S.: The l 4 norm of a polynomial with coefficients ±1. Amer. Math. Monthly 97, 42–45 (1990)

    Article  MathSciNet  Google Scholar 

  10. Golay, M.J.E.: The merit factor of legendre sequences. IEEE Trans. Inform. Theory 29, 934–936 (1983)

    Article  MATH  Google Scholar 

  11. Kristiansen, R.A.: On the aperiodic autocorrelation of binary sequences. Master’s thesis, Selmer Centre, Inst. for Informatics, University of Bergen, Norway (2003), http://www.ii.uib.no/~matthew/Masters/notes.ps

  12. Kristiansen, R.A., Parker, M.G.: Binary sequences with merit factor > 6.3. IEEE Trans. Inform. Theory 50, 3385–3389 (2004)

    Article  MathSciNet  Google Scholar 

  13. Borwein, P., Choi, K.K.S., Jedwab, J.: Binary sequences with merit factor greater than 6.34. IEEE Trans. Inform. Theory 50, 3234–3249 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jedwab, J.: A survey of the merit factor problem for binary sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 30–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Ramakrishna, G.S., Mow, W.H.: A new search for optimal binary arrays with minimum peak sidelobe levels. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 355–360. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Zhang, X.M., Zheng, Y.: Gac - the criterion for global avalanche characteristics of cryptographic functions. J. Universal Computer Science 1, 320–337 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Gulliver, T.A., Parker, M.G.: The multi-dimensional aperiodic merit factor of binary sequences. preprint (2003), http://www.ii.uib.no/~matthew/ISITRecursions.pdf

  18. Golay, M.J.E.: Multislit spectroscopy. J. Opt. Soc. Amer. 39, 437–444 (1949)

    Article  Google Scholar 

  19. Shapiro, H.S.: Extremal problems for polynomials. Master’s thesis, M.I.T (1951)

    Google Scholar 

  20. Rudin, W.: Some theorems on fourier coefficients. Proc. Amer. Math. Soc. 10 (1959)

    Google Scholar 

  21. Parker, M.G., Rijmen, V.: The quantum entanglement of binary and bipolar sequences. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications, SETA 2001. Discrete Mathematics and Theoretical Computer Science Series, Springer, Heidelberg (2001), http://arxiv.org/quant-ph/0107106 (long version)

    Google Scholar 

  22. Riera, C., Parker, M.G.: Generalised bent criteria for boolean functions (i). (preprint) (2004), http://www.ii.uib.no/~matthew/LCPartIf.pdf

  23. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Physical Review Letters 86, 910–913 (2001)

    Article  Google Scholar 

  24. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0307130

  25. Verstraete, F.: A Study of Entanglement in Quantum Information Theory. PhD thesis, Dept. Elektrotechniek, Katholieke Universiteit, Leuven, Belgium (2002)

    Google Scholar 

  26. Parker, M.G.: Quantum factor graphs. Annals of Telecom, 472–483 (2001), http://arxiv.org/quant-ph/0010043

  27. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65 (2002), http://arxiv.org/quant-ph/0012111

  28. Glynn, D.G.: On self-dual quantum codes and graphs. Submitted to Elect. J. Combinatorics (2002), http://homepage.mac.com/dglynn/.cv/dglynn/Public/SD-G3.pdf-link.pdf

  29. Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum codes. In: Proc. IEEE Int. Symp. Inform. Theory, p. 45 (2002)

    Google Scholar 

  30. Glynn, D.G., Gulliver, T.A., Maks, J.G., Gupta, M.K.: The Geometry of Additive Quantum Codes. Springer, Heidelberg (2004)

    Google Scholar 

  31. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  32. Zyczkowski, K., Bengtsson, I.: Relativity of pure states entanglement. Ann. Phys. 295 (2002)

    Google Scholar 

  33. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998), http://arxiv.org/quant-ph/9608006

    Article  MATH  MathSciNet  Google Scholar 

  34. Klappenecker, A., Rotteler, M.: Clifford codes. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation. CRC Press, Boca Raton (2002)

    Google Scholar 

  35. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997), http://arxiv.org/quant-ph/9705052

  36. Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic propagation criteria for Boolean functions. ECRYPT Internal Document, STVL-UiB-1-APC-1.0 (2004), http://www.ii.uib.no/~matthew/GenDiff4.pdf

  37. Danielsen, L.E., Parker, M.G.: Spectral orbits and peak-to-average power ratio of boolean functions with respect to the {I,H,n}n transform. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 373–388. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Grassl, M.: Bounds on d min for additive [[n,k,d]] QECC (2003), Web page http://iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html

  39. Riera, C., Petrides, G., Parker, M.G.: Generalised bent criteria for boolean functions (ii). (preprint) (2004), http://www.ii.uib.no/~matthew/LCPartIIf.pdf

  40. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low peak-to-average power ratio. Technical Report 242, Dept. of Informatics, University of Bergen, Norway (2003), http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf , update at: http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf

  41. Borwein, P., Choi, K.K.S.: Explicit merit factor formulae for fekete and turyn polynomials. Trans. Amer. Math. Soc. 354, 219–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Borwein, P., Choi, K.K.S.: Merit factors of polynomials formed by jacobi symbols. Canad. J. Math. 53, 33–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–209. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  44. Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Technical report, Dept. Math. and Comput. Science, Univ. of Richmond (1999), http://www.mathcs.richmond.edu/~jad/summer.html

  45. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory 45, 2397–2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Danielsen, L.E.: Database of self-dual quantum codes (2004) Web page, http://www.ii.uib.no/~larsed/vncorbits/

  47. Golay, M.J.E.: Complementary series. IRE Trans. Inform. Theory IT 7, 82–87 (1961)

    Article  MathSciNet  Google Scholar 

  48. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  49. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0308151

  50. Bouchet, A.: Isotropic systems. European J. Combin. 8, 231–244 (1987)

    MATH  MathSciNet  Google Scholar 

  51. Bouchet, A.: Recognizing locally equivalent graphs. Discrete Math. 114, 75–86 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  52. Storøy, D.: Master’s thesis - in preparation. Selmer Centre, Inst. for Informatics, University of Bergen, Bergen, Norway (2005)

    Google Scholar 

  53. Gulliver, T.A., Kim, J.L.: Circulant based extremal additive self-dual codes over GF(4). IEEE Trans. Inform. Theory 50, 359–366 (2004)

    Article  MathSciNet  Google Scholar 

  54. Danielsen, L.E.: Master’s thesis - in preparation. Selmer Centre, Inst. for Informatics, University of Bergen, Bergen, Norway (2005)

    Google Scholar 

  55. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Combin. Theory Ser. B 92, 199–233 (2004), http://arxiv.org/abs/math/0209045

    Article  MATH  MathSciNet  Google Scholar 

  57. Bouchet, A.: Tutte-martin polynomials and orienting vectors of isotropic systems. Graphs Combin. 7, 235–252 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  58. Riera, C., Parker, M.G.: Spectral interpretations of the interlace polynomial (preprint) (2004), http://www.ii.uib.no/~matthew/WCC4.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, M.G. (2005). Univariate and Multivariate Merit Factors. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_4

Download citation

  • DOI: https://doi.org/10.1007/11423461_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics