Skip to main content

Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I,H,N}n Transform

  • Conference paper
Book cover Sequences and Their Applications - SETA 2004 (SETA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR IHN , peak-to-average power ratio with respect to the {I,H,N}n transform set. We prove that PAR IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR IHN and algebraic degree higher than 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998), http://arxiv.org/quant-ph/9608006

    Article  MATH  MathSciNet  Google Scholar 

  2. Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998), http://arxiv.org/math/0208001

    Google Scholar 

  3. Höhn, G.: Self-dual codes over the Kleinian four group. Mathematische Annalen 327, 227–255 (2003), http://arxiv.org/math/0005266

    Article  MATH  MathSciNet  Google Scholar 

  4. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0307130

  5. Glynn, D.G., Gulliver, T.A., Maks, J.G., Gupta, M.K.: The geometry of additive quantum codes. Springer, Heidelberg (2004) (submitted)

    Google Scholar 

  6. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2004), Web page http://www.research.att.com/~njas/sequences/

  7. Danielsen, L.E.: Database of self-dual quantum codes (2004), Web page http://www.ii.uib.no/~larsed/vncorbits/

  8. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65 (2002), http://arxiv.org/quant-ph/0012111

  9. Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum codes. In: Proc. IEEE Int. Symp. Inform. Theory, p. 45 (2002)

    Google Scholar 

  10. Glynn, D.G.: On self-dual quantum codes and graphs. Submitted to Elect. J. Combinatorics (2002), http://homepage.mac.com/dglynn/.cv/dglynn/Public/SD-G3.pdf-link.pdf

  11. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69 (2004), http://arxiv.org/quant-ph/0308151

  12. Parker, M.G., Rijmen, V.: The quantum entanglement of binary and bipolar sequences. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications, SETA 2001. Discrete Mathematics and Theoretical Computer Science Series. Springer, Heidelberg (2001), http://arxiv.org/quant-ph/0107106 (long version)

    Google Scholar 

  13. Bouchet, A.: Isotropic systems. European J. Combin. 8, 231–244 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Bouchet, A.: Recognizing locally equivalent graphs. Discrete Math. 114, 75–86 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. McKay, B.D.: nauty User’s Guide (2004), http://cs.anu.edu.au/~bdm/nauty/nug.pdf

  16. Gulliver, T.A., Kim, J.-L.: Circulant based extremal additive self-dual codes over GF(4). IEEE Trans. Inform. Theory 50, 359–366 (2004)

    Article  MathSciNet  Google Scholar 

  17. Grassl, M.: Bounds on d min for additive [[n,k,d]] QECC (2003), Web page http://iaks-www.ira.uka.de/home/grassl/QECC/TableIII.html

  18. Riera, C., Petrides, G., Parker, M.G.: Generalized bent criteria for Boolean functions. Technical Report 285, Dept. of Informatics, University of Bergen, Norway (2004), http://www.ii.uib.no/publikasjoner/texrap/pdf/2004-285.pdf

  19. Parker, M.G.: Generalised S-box nonlinearity. NESSIE Public Document, NES/DOC/UIB/WP5/020/A (2003), https://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase2/SBoxLin.pdf

  20. Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic propagation criteria for Boolean functions. Submitted to Inform. Comput. (2004), http://www.ii.uib.no/~matthew/GenDiff4.pdf

  21. Radziszowski, S.P.: Small Ramsey numbers. Elect. J. Combinatorics, Dynamical Survey DS1, 1–42 (2002), http://www.combinatorics.org/Surveys/ds1.pdf

  22. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Combin. Theory Ser. B 92, 199–233 (2004), http://arxiv.org/math/0209045

    Article  MATH  MathSciNet  Google Scholar 

  23. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Riera, C., Parker, M.G.: Spectral interpretations of the interlace polynomial. Submitted to WCC 2005 (2004), http://www.ii.uib.no/~matthew/WCC4.pdf

  25. Parker, M.G., Gulliver, T.A.: On graph symmetries and equivalence of the six variable double-clique and wheel (2003) (Unpublished)

    Google Scholar 

  26. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low peak-to-average power ratio. In: Proc. IEEE Int. Symp. Inform. Theory, p. 239 (2002), http://www.ii.uib.no/~matthew/634isit02.pdf

  27. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low peak-to-average power ratio. Technical Report 242, Dept. of Informatics, University of Bergen, Norway (2003), http://www.ii.uib.no/publikasjoner/texrap/pdf/2003-242.pdf

  28. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory 45, 2397–2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danielsen, L.E., Parker, M.G. (2005). Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I,H,N}n Transform. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_28

Download citation

  • DOI: https://doi.org/10.1007/11423461_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics