Skip to main content

Cross-Correlation Properties of Perfect Binary Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Abstract

Binary sequences with good autocorrelation properties are widely used in cryptography. If the autocorrelation properties are optimum, then the sequences are called perfect. In the last few years, new constructions for perfect sequences have been found. In this paper we investigate the cross-correlation properties between perfect sequences. We give a lower bound for the maximum cross-correlation coefficient between arbitrary perfect sequences. We conjecture that this bound is not best possible. Furthermore, we determine perfect sequences with provable good correlation properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Mathematics 16, 209–232 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pursley, M.B., Sarwate, D.V.: Performance Evaluation for Phase-code Spread-spectrum Muiltiple-access Communication. II: Code Sequence Analysis. IEEE Transactions Communication 25, 800–803 (1977)

    Article  MATH  Google Scholar 

  3. Antweiler, M.: Cross-correlation of p-ary GMW Sequences. IEEE Transactions on Information Theory 40, 1253–1261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. In: Encyclopedia of Mathematics and its Applications, 2nd edn., vol. 1. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Dillon, J.F.: Multiplicative Difference Sets via Additive Charakters. Designs, Codes and Cryptography 17, 225–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dillon, J.F., Dobbertin, H.: New Cyclic Difference Sets with Singer Parameters (1999) (preprint)

    Google Scholar 

  8. Dobbertin, H.: Construction of bent functions and balanced boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995)

    Google Scholar 

  9. Games, R.A.: Crosscorrelation of m-Sequences and GMW-sequences with the same primitive polynomial. Discrete Applied Mathematics 12, 139–146 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordon, B., Mills, W.H., Welch, L.R.: Some new difference sets. Canadian Journal of Mathematics 14, 614–625 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Handbook of Coding Theory, vol. 1,2, pp. 1065–1138. North-Holland, Amsterdam (1998)

    Google Scholar 

  12. Jungnickel, D., Pott, A.: Perfect and almost perfect sequences. Discrete Applied Mathematics 95, 331–359 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maschietti, A.: Difference Sets and Hyperovals. Designs, Codes and Cryptography 14, 89–98 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. No, J.S., Chung, H., Yun, M.S.: Binary Pseudorandom Sequences of Period 2m − 1 with Ideal Autocorrelation Generated by the Polynomial z d + (z + 1)d. IEEE Transactions on Information Theory 44, 1278–1282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Patterson, N.J., Wiedemann, D.H.: The covering radius of the (2**(15),16) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory 29, 354–356 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Games, R.A.: Crosscorrelation of m-sequences and GMW-sequences with the same Primitive Polynomial. Discrete Applied Mathematics 12, 139–146 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chan, A.H., Goresky, M., Klapper, A.: Correlation functions of geometric sequences. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 214–221. Springer, Heidelberg (1991)

    Google Scholar 

  18. Shedd, D.A., Sarwate, D.V.: Construction of Sequences with Good Correlation Properties. IEEE Transactions on Information Theory IT-25(1), 94–97 (1979)

    Article  MathSciNet  Google Scholar 

  19. Golomb, S.: Shift Register Sequences. Holden-Day, Oakland (1967) Revised edition: Aegean Park Press, Laguna Hills

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hertel, D. (2005). Cross-Correlation Properties of Perfect Binary Sequences. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_14

Download citation

  • DOI: https://doi.org/10.1007/11423461_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics