Skip to main content

RNA-RNA Interaction Prediction and Antisense RNA Target Search

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3500))

Abstract

Recent studies demonstrating the existence of special non-coding “antisense” RNAs used in post-transcriptional gene regulation have received considerable attention. These RNAs are synthesized naturally to control gene expression in C.elegans, Drosophila and other organisms; they are known to regulate plasmid copy numbers in E.coli as well. Small RNAs have also been artificially constructed to knock-out genes of interest in humans and other organisms for the purpose of finding out more about their functions.

Although there are a number of algorithms for predicting the secondary structure of a single RNA molecule, no such algorithm exists for reliably predicting the joint secondary structure of two interacting RNA molecules, or measuring the stability of such a joint structure. In this paper, we describe the RNA-RNA interaction prediction (RIP) problem between an antisense RNA and its target mRNA and develop efficient algorithms to solve it. Our algorithms minimize the joint free-energy between the two RNA molecules under a number of energy models with growing complexity. Because the computational resources needed by our most accurate approach is prohibitive for long RNA molecules, we also describe how to speed up our techniques through a number of heuristic approaches while experimentally maintaining the original accuracy. Equipped with this fast approach, we apply our method to discover targets for any given antisense RNA in the associated genome sequence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andronescu, M., Aguirre-Hernandes, R., Condon, A., Hoos, H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Research 31(13), 3416–3422 (2003)

    Article  Google Scholar 

  3. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Collins, G., Le, S., Zhang, K.: A new algorithm for computing similarity between RNA structures. In: Proc. 5th Joint Conf. on Information Science, Atlantic City, NJ, March 2000, vol. 2, pp. 761–765 (2000)

    Google Scholar 

  5. Kim, C.-H., Tinoco Jr., I.: A Retroviral RNA Kissing Complex Containing Only Two G-C Base Pairs. Proc. Nat. Acad. Sci. USA 97, 93–96 (2000)

    Google Scholar 

  6. Kolb, F.A., Engdahl, H.M., Slagter-Jager, J.G., Ehresmann, B., Ehresmann, C., Westhof, E., Wagner, E.G.H., Romby, P.: Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO Journal 19(21), 5905–5915 (2000)

    Article  Google Scholar 

  7. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T.: Identification of novel genes coding for small expressed RNAs. Science 294, 853–857 (2001)

    Article  Google Scholar 

  8. Lau, N.C., Lim, L.P., Weinstein, E.G., Bartel, D.P.: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001)

    Article  Google Scholar 

  9. Lyngso, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)

    Article  Google Scholar 

  10. Mathews, D., Sabina, J., Zuker, M., Turner, D.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288, 911–940 (1999)

    Article  Google Scholar 

  11. McManus, M.T., Sharp, P.A.: Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics 10, 737–747 (2002)

    Article  Google Scholar 

  12. Moss, E.G.: RNA interference: It’s a small RNA world. Current Biology 11, R772–R775 (2001)

    Article  MathSciNet  Google Scholar 

  13. Moss, E.G.: MicroRNAs: Hidden in the Genome. Current Biology 12, R138–R140 (2002)

    Article  Google Scholar 

  14. Notredame, C., O’Brien, E.A., Higgins, D.G.: RAGA: RNA sequence alignment by genetic algorithm. Nucleic Acids Research 25(22), 4570–4580 (1997)

    Article  Google Scholar 

  15. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single stranded RNA. PNAS 77, 6309–6313 (1980)

    Article  Google Scholar 

  16. NCBI web site, http://www.ncbi.nlm.nih.gov

  17. Pervouchine, D.D.: IRIS: Intermolecular RNA Interaction Search. In: 15th Int. Conf. Genome Informatics (2004)

    Google Scholar 

  18. Peyret, N., SantaLucia, J.: HYTHERTM version 1.0. Wayne State University, http://ozone2.chem.wayne.edu/Hyther/hythermenu.html

  19. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., Ruvkun, G.: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000)

    Article  Google Scholar 

  20. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  21. Wagner, E.G.H., Flardh, K.: Antisense RNAs everywhere? TRENDS in Genetics 18(5), 223–226 (2002)

    Article  Google Scholar 

  22. Zhang, K., Wang, L., Ma, B.: Computing similarity between RNA structures. Theoretical Computer Sciences 276(1-2), 111–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  24. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alkan, C., Karakoç, E., Nadeau, J.H., Şahinalp, S.C., Zhang, K. (2005). RNA-RNA Interaction Prediction and Antisense RNA Target Search. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_12

Download citation

  • DOI: https://doi.org/10.1007/11415770_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25866-7

  • Online ISBN: 978-3-540-31950-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics