Skip to main content

Sparse Finite Element Level-Sets for Anisotropic Boundary Detection in 3D Images

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Level-Set methods have been successfully applied to 2D and 3D boundary detection problems. The geodesic active contour model has been particularly successful. Several algorithms for the discretisation have been proposed and the banded approach has been used to improve efficiency, which is crucial in 3D boundary detection. In this paper we propose a new scheme to numerically represent and evolve surfaces in 3D. With the new scheme, efficiency and accuracy are further improved. For the representation, space is partitioned into tetrahedra and finite elements are used to define the level-set function. Extreme sparsity is obtained by maintaining data only for tetrahedra that contain the zero level-set. We formulate the evolution PDE in weak form and incorporate a normalisation term. We obtain a stable scheme with consistent sub-grid accuracy without having to rely on any re-initialisation procedure. Boundary detection is performed using an anisotropic extension of the isotropic geodesic model. With the sparse representation, the anisotropic model is computationally feasible. We present experimental results on volumetric data sets including images with a significant amount of noise.

This work was supported by the EPSRC, the Cambridge European Trust and DAAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 158–175 (1995)

    Article  Google Scholar 

  2. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 810–815 (1995)

    Google Scholar 

  3. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16, 199–209 (1997)

    Article  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces: A geometric three dimensional segmentation approach. Numerische Mathematik 77, 423–425 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 26–33 (2003)

    Google Scholar 

  6. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 703–714 (1991)

    Article  Google Scholar 

  7. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  9. Sapiro, G.: Geometric Partial Differential Equations and Image Processing. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  10. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging Vision and Graphics. Springer, New York (2003)

    MATH  Google Scholar 

  11. Preußer, T., Rumpf, M.: A level set method for anisotropic geometric diffusion in 3D image processing. SIAM J. on Applied Math. 62(5), 1772–1793 (2002)

    Article  MATH  Google Scholar 

  12. Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. Journal of Visual Communication and Image Representation 11, 209–223 (2000)

    Article  Google Scholar 

  13. Weber, M., Blake, A., Cipolla, R.: Sparse finite elements for geodesic contours with level-sets. In: Proc. European Conf. on Computer Vision, Prague, Czech Republic, pp. 391–404. Springer, Heidelberg (2004)

    Google Scholar 

  14. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Processing 10, 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  15. Weickert, J., ter Haar Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Processing 7, 398–410 (1998)

    Article  Google Scholar 

  16. Weber, M.: Curve and Surface Reconstruction from Images and Sparse Finite Element Level-Sets. PhD thesis, Department of Engineering, University of Cambridge (2004)

    Google Scholar 

  17. Do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  18. Kimmel, R., Bruckstein, A.: Regularized Laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision 53, 225–243 (2003)

    Article  Google Scholar 

  19. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. In: Proc. IEEE Int. Conf. on Computer Vision, Vancover, Canada, pp. 149–154 (2001)

    Google Scholar 

  20. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  21. Zienkiewicz, O., Morgan, K.: Finite Elements & Approximation. John Wiley & Sons, New York (1983)

    MATH  Google Scholar 

  22. Schwarz, H.: Numerische Mathematik. Teubner, Stuttgart (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, M., Blake, A., Cipolla, R. (2005). Sparse Finite Element Level-Sets for Anisotropic Boundary Detection in 3D Images. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_47

Download citation

  • DOI: https://doi.org/10.1007/11408031_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics