Skip to main content

Perfusion Analysis of Nonlinear Liver Ultrasound Images Based on Nonlinear Matrix Diffusion

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Doppler has been used for many years for cardiovascular exploration in order to visualize vessel walls as well as anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information.

Recently, nonlinear imaging has emerged as a powerful tool for characterizing pathologies by studying their perfusion. In this paper, we present a new method for estimating the perfusion parameter over a sliding window in order to accurately characterize liver lesions from two-dimensional nonlinear ultrasound images. This method is inspired by the Lucas and Kanade Algorithm coupled with coherence enhancing diffusion in order to suppress the speckle and transparent motions due to the presence of contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Elmoniem, K., Kadah, Y.M., et al.: Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering 49(9), 997–1014 (2002)

    Article  Google Scholar 

  2. Ferrant, M.: Physics-based Deformable Modeling of Volumes and Sur-faces for Medical Image Registration, Segmentation and Visualization. PhD thesis, Universite Catholique de Louvain (2001)

    Google Scholar 

  3. Goldberg, B., Forsberg, F., Raichlen, J.S.: Ultrasound Contrast agents: Basic Principles and Clinical Applications. Dunitz Martin Ltd. (2001)

    Google Scholar 

  4. Goodman, J.W.: Introduction to fourier optics (1968)

    Google Scholar 

  5. Hamarneh, G., Althoff, K., Gustavsson, T.: Snake deformations based on optical flow forces for contrast agent tracking in echocardiography. In: Proceedings of the Swedish symposium on Image Analysis, SSAB (2000)

    Google Scholar 

  6. Haussecker, H.W., Fleet, D.J.: Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Analysis Machine Intelligence 23(6), 661–673 (2001)

    Article  Google Scholar 

  7. Hemmendorff, M.: Motion estimation and compensation in medical imaging. Master’s thesis, Linköping University, SE-581 83 Linköping, Sweden, LiTH-ISY-EX-1750 (2001)

    Google Scholar 

  8. Kissi, A., Cormier, S., Pourcelot, L., Bleuzen, A., Tranquart, T.: Contrast enhanced ultrasound image segmentation based on fuzzy competitive clustering and anisotropic diffusion. In: Proceedings of the 2004 IEEE EMBS, pp. 587–592 (2004)

    Google Scholar 

  9. Malpica, N., Desco, M., et al.: Tracking of regions-of-interest in myocardial contrast echocardiography. Ultrasound in Medicine and Biology 30(30), 303–309 (2004)

    Article  Google Scholar 

  10. Spies, H., Scharr, H.: Accurate optical flow in noisy image sequences. In: Proceedings of the 2001 ICCV, pp. 587–592 (2001)

    Google Scholar 

  11. Tranquart, F., Bleuzen, A., et al.: Echographie de contraste et affections hépatiques (contrast ultrasound imaging in liver disease). J. Radiol 84, 2025–2040 (2003)

    Google Scholar 

  12. Tranquart, F., Grenier, N.: Imagerie ultrasonore non linéaire (nonlinear ultrasound imaging). J. Radiol 81, 1731–1735 (2000)

    Google Scholar 

  13. Weickert, J., Brox, T.: Nonlinear matrix diffusion for optical flow estimation. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 446–453. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Weickert, J.: Coherence-enhancing diffusion filtering. Internal Journal of Computer Vision 31(3), 111–127 (1999)

    Article  Google Scholar 

  15. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. Computing Supplement 11, 221–236 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kissi, A., Cormier, S., Pourcelot, L., Bleuzen, A., Tranquart, F. (2005). Perfusion Analysis of Nonlinear Liver Ultrasound Images Based on Nonlinear Matrix Diffusion. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_45

Download citation

  • DOI: https://doi.org/10.1007/11408031_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics