Skip to main content

A Geometric Formulation of Gradient Descent for Variational Problems with Moving Surfaces

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Developments within the computer vision community have led to the formulation of many interesting problems in a variational setting. This paper introduces the manifold of admissible surfaces and a scalar product on its tangent spaces. This makes it possible to properly define gradients and gradient descent procedures for variational problems involving m-surfaces. These concepts lead to a geometric understanding of current state of the art evolution methods and steepest descent evolution equations. By geometric reasoning, common procedures within the variational level set framework are explained and justified. Concrete computations for a general class of functionals are presented and applied to common variational problems for curves and surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimmel, R., Bruckstein, A.: Regularized Laplacian zero crossings as optimal edge integrators. Int. Journal of Computer Vision 53, 225–243 (2003)

    Article  Google Scholar 

  2. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. on PAMI 24, 1565–1578 (2002)

    Google Scholar 

  3. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from unorganized points using a variational level set method. In: Computer Vision and Image Understanding, pp. 295–319 (2000)

    Google Scholar 

  4. Faugeras, O., Keriven, R.: Variational principles, surface evolution, PDEs, level set methods, and the stereo problem. IEEE Transactions on Image Processing 7, 336–344 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Journal of Computer Vision (1997)

    Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 394–398 (1997)

    Article  Google Scholar 

  7. Goldlücke, B., Magnor, M.: Weighted minimal hypersurfaces and their applications in computer vision. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 366–378. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  9. Thorpe, J.A.: Elementary Topics in Differential Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  10. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Computational Physics 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759–780 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)

    MATH  Google Scholar 

  13. Gelfand, I., Fomin, S.: Calculus of Variations. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  14. Fua, P., Leclerc, Y.: Model driven edge detection. MVA 3, 45–56 (1990)

    Article  Google Scholar 

  15. Paragios, N., Deriche, R.: Geodesic active regions: A new paradigm to deal with frame partition problems in computer vision. International Journal of Visual Communication and Image Representation (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solem, J.E., Overgaard, N.C. (2005). A Geometric Formulation of Gradient Descent for Variational Problems with Moving Surfaces. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_36

Download citation

  • DOI: https://doi.org/10.1007/11408031_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics