Skip to main content

A Total Variation Motion Adaptive Deinterlacing Scheme

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

We propose a new way of deinterlacing using a total variation scheme. Starting by the Bayesian inference formulation of total variation we do MAP by rewriting the problem into PDEs that can be solved by simple numerical schemes. Normally deinterlacing schemes are developed ad hoc with online hardware implementation directly at eye, sometimes with some frequency analysis as only theoretical base. Our belief is that mathematically well based image models are needed to do optimal deinterlacing and by our work presented here, we hope to prove it. Comparing the output of our scheme with those of ten known deinterlacing schemes shows very promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. In: Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2002)

    Google Scholar 

  2. Bellers, E.B., De Haan, G.: Deinterlacing: A Key Technology for Scan Rate Conversion. Elsevier, Amsterdam (2000)

    Google Scholar 

  3. Capodiferro, L.: Interlaced to Progressive Conversion by Median Filtering. In: Chiarglione, L. (ed.) Signal Processing of HDTV, vol. II. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  4. Chan, T.F., Shen, J.: Mathematical Models for Local Nontexture Inpaintings. SIAM Journal on Applied Mathematics 62(3), 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chanas, L.: Méthodes variationelles pour la restauration de séquences d’images fortement dégradées. Application aux images éblouies par laser. Ph.D. Thesis, University of Cergy-Pontoise (2001)

    Google Scholar 

  6. Doyle, T., Looymans, M.: Progressive Scan Conversion Using Edge Information. In: Chiarglione, L. (ed.) Signal Processing of HDTV, vol. II. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  7. Dreier, H.-J.: Line Flicker Reduction by Adaptive Signal Processing. In: Chiarglione, L. (ed.) Signal Processing of HDTV, vol. II. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  8. Haavisto, P., Juhola, J., Neuvo, Y.: Scan Rate Up-Conversion Using Adaptive Weighted Median Filtering. In: Chiarglione, L. (ed.) Signal Processing of HDTV, vol. II. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  9. Kovacevic, J., Safranek, R.J., Yeh, E.M.: Deinterlacing by Successive Approximation. IEEE Trans. Image Proc. 6(2) (1997)

    Google Scholar 

  10. Mumford, D.: Bayesian Rationale For The Variational Formulation. In: ter Haar Romeny, B.M. (ed.) Geometry-Driven Diffusion In Computer Vision, pp. 135–146. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  11. Pigeon, S., Guillotel, P.: Advantages and Drawbacks of Interlaced and Progressive Scanning Formats. CEC RACE/HAMLET Deliverable no R2110/WP2/DS/R/004/b1 (1995)

    Google Scholar 

  12. Rudin, L., Osher, S., Fatemi, E.: Non Linear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–286 (1992)

    Article  MATH  Google Scholar 

  13. Skarabot, A., Ramponi, G., Buriola, L.: FPGA architecture for a videowall image processor. In: Proc. SPIE Intern. Symp. Electronic Imaging 2001 (2001)

    Google Scholar 

  14. Skarabot, A., Ramponi, G., Toffoli, D.: Image sequence processing for videowall visualization. In: Proc. IST/SPIE 12th Annual Intern. Symp. Electronic Imaging 2000 (2000)

    Google Scholar 

  15. Tekalp, A.M.: Digital Video Processing. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  16. Thomas, G.A.: A Comparison of Motion-Compensated Interlace-to-Progressive Conversion Methods. Signal Process.: Image Commun. 12(3) (1998)

    Google Scholar 

  17. Wang, Y., Ostermann, J., Zhang, Y.Q.: Video Processing and Communications. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, S., Lauze, F., Nielsen, M. (2005). A Total Variation Motion Adaptive Deinterlacing Scheme. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_35

Download citation

  • DOI: https://doi.org/10.1007/11408031_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics