Skip to main content

Vortex and Source Particles for Fluid Motion Estimation

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

In this paper we propose a new motion estimator for image sequences depicting fluid flows. The proposed estimator is based on the Helmholtz decomposition of vector fields. This decomposition consists in representing the velocity field as a sum of a divergence free component and a curl free component. The objective is to provide a low-dimensional parametric representation of optical flows by depicting them as a flow generated by a small number of vortex and source particles. Both components are approximated using a discretization of the vorticity and divergence maps through regularized Dirac measures. The resulting so called irrotational and solenoidal fields consist then in linear combinations of basis functions obtained through a convolution product of the Green kernel gradient and the vorticity map or the divergence map respectively. The coefficient values and the basis function parameters are obtained by minimization of a functional relying on an integrated version of mass conservation principle of fluid mechanics. Results are provided on real world sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Béréziat, D., Herlin, I., Younes, L.: A generalized optical flow constraint and its physical interpretation. In: Proc. Conf. Comp. Vision Pattern Rec., Hilton Head Island, South Carolina, USA, vol. 2, pp. 487–492 (2000)

    Google Scholar 

  2. Chorin, A.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Analysis Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  5. Corpetti, T., Mémin, E., Pérez, P.: Extraction of singular points from dense motion fields: an analytic approach. J. Mathematical Imaging and Vision 19(3), 175–198 (2003)

    Article  MATH  Google Scholar 

  6. Fitzpatrick, J.M.: A method for calculating velocity in time dependent images based on the continuity equation. In: Proc. Conf. Comp. Vision Pattern Rec., San Francisco, USA, pp. 78–81 (1985)

    Google Scholar 

  7. Ford, R.M., Strickland, R., Thomas, B.: Image models for 2-d flow visualization and compression. Graph. Mod. Image Proc. 56(1), 75–93 (1994)

    Article  Google Scholar 

  8. Fukanaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Info. Theory 21(1), 32–40 (1975)

    Article  Google Scholar 

  9. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the Helmholtz decomposition. In: Int. conf. on Scale-Space theories in Computer Vision (Scale-Space 2003), Isle of Skye (June 2003)

    Google Scholar 

  10. Larsen, R., Conradsen, K., Ersboll, B.K.: Estimation of dense image flow fields in fluids. IEEE trans. on Geoscience and Remote sensing 36(1), 256–264 (1998)

    Article  Google Scholar 

  11. Leonard, A.: Vortex methods for flow simulation. J. Comp. Phys. 37 (1980)

    Google Scholar 

  12. Mémin, E., Pérez, P.: Fluid motion recovery by coupling dense and parametric motion fields. In: Int. Conf. on Computer, ICCV 1999, pp. 620–625 (1999)

    Google Scholar 

  13. Schunk, B.G.: The motion constraint equation for optical flow. In: Proc. Int. Conf. Pattern Recognition, Montreal, pp. 20–22 (1984)

    Google Scholar 

  14. Thisted, R.A.: Elements of statistical computing. Chapman and Hall, Boca Raton (1988)

    MATH  Google Scholar 

  15. Wildes, R., Amabile, M., Lanzillotto, A.M., Leu, T.S.: Physically based fluid flow recovery from image sequences. In: Proc. Conf. Comp. Vision Pattern Rec., pp. 969–975 (1997)

    Google Scholar 

  16. Zhou, L., Kambhamettu, C., Goldgof, D.: Fluid structure and motion analysis from multi-spectrum 2D cloud images sequences. In: Proc. Conf. Comp. Vision Pattern Rec., Hilton Head Island, South Carolina, USA, vol. 2, pp. 744–751 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuzol, A., Mémin, E. (2005). Vortex and Source Particles for Fluid Motion Estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_22

Download citation

  • DOI: https://doi.org/10.1007/11408031_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics