Skip to main content

Exciton and Polariton Condensation

  • Chapter
  • First Online:
Quantum Coherence

Part of the book series: Lecture Notes in Physics ((LNP,volume 689))

  • 1104 Accesses

Abstract

These are the notes for a course on a theoretical description of condensation of excitons and exciton-polaritons in semiconductors. A special emphasis is made on the case of quantum wells. We start by presenting a standard theory that can be found also in several excellent books and reviews. We concentrate in the question of detecting condensation without paying attention to the open problem of the dynamics of condensation appearance. Special care is devoted to the emission of light. The recently studied case of condensation of magnetoexcitons is briefly discussed. Since excitons have the third component of the total angular momentum as an internal degree of freedom, this opens the extremely interesting possibility of multicomponent condensates which we discuss in some detail. In particular, we show the appearance of an interesting behavior of the polarization of the light emitted by this multicomponent condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Snoke, Science, 298, 1368 (2003) and references therein.

    Article  ADS  Google Scholar 

  2. S.A. Moskalenko and D.W. Snoke, Bose-Einstein condensation of excitons and biexcitons, (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  3. Bose-Einstein condensation, A. Griffin, D.W. Snoke and S. Stringari, eds. (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  4. H. Haug and A.P. Jauho, Quantum kinetics in transport and optics of semiconductors, (Springer, Berlin, 1996)

    Google Scholar 

  5. F. Rossi and T. Kuhn, Rev. Mod. Phys., 74, 895 (2002) and references therein.

    Article  ADS  Google Scholar 

  6. Y. Yamamoto and A. Imamoglu, Mesoscopic quantum optics, (Wiley, New York, 1999)

    MATH  Google Scholar 

  7. P. Nozieres in ref. [3].

    Google Scholar 

  8. L.V. Keldysh and Yu.V. Kopaev, Fiz. Tverd. Tela 6, 2791 (1964) [Sov. Phys. Solid State 6, 2219 (1965)]; L.V. Keldysh and A.N. Kozlov, Sov. Phys. JETP 27, 521 (1968)

    Google Scholar 

  9. C. Comte, and P. Nozières, J. Physique 43, 1069 (1982); P. Nozières and C. Comte ibid 43, 1083 (1982)

    Article  Google Scholar 

  10. H. Haug and S. Schmitt-Rink, Prog. Quant. Electr., 9, 3 (1984)

    Article  ADS  Google Scholar 

  11. L.V. Keldysh, in ref. [3]

    Google Scholar 

  12. A. Imamoglu, R.J. Ram, S. Pau and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)

    Article  ADS  Google Scholar 

  13. J. Fernandez-Rossier, C. Tejedor and R. Merlin, Solid St. Commun., 108, 473 (1998)

    Article  ADS  Google Scholar 

  14. H. Haug and S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, London, 1993)

    Google Scholar 

  15. P.W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin-Cummings, Menlo Park, 1984)

    Google Scholar 

  16. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, New York, 1975)

    Google Scholar 

  17. S. Stringari in ref. [3]

    Google Scholar 

  18. X. Zhu, P.B. Littlewood, M.S. Hybertsen and T.M. Rice, Phys. Rev. Lett. 74, 1633 (1995); P.B. Littlewood and X. Zhu, Physica Scripta T68, 56 (1996)

    Google Scholar 

  19. A. Olaya-Castro, F.J. Rodríguez, L. Quiroga, and C. Tejedor, Phys. Rev. Lett. 87, 246403 (2001)

    Article  ADS  Google Scholar 

  20. L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard and D.S. Chemla, Nature 417, 47 (2002); L.V. Butov, A.C. Gossard and D.S. Chemla, Nature 418, 751 (2002)

    Google Scholar 

  21. D. Snoke, S. Denev, Y. Liu, L. Pfeiffer and K. West, Nature 418, 754 (2002)

    Article  ADS  Google Scholar 

  22. D. Paquet, T.M. Rice and K. Ueda, Phys. Rev. B 32, 5298 (1985)

    Article  ADS  Google Scholar 

  23. S.M. Girvin and A.H. MacDonald in Perspectives in quantum Hall effects, edited by S. DasSarma and A. Pinczuk (Wiley, New York, 1997)

    Google Scholar 

  24. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  25. J. Fernández-Bossier and C. Tejedor, Phys. Rev. Lett. 78, 4809 (1997)

    Article  ADS  Google Scholar 

  26. L. Viña, L. Muoz, E. Prez, J. Fernndez-Rossier, C. Tejedor and K. Ploog, Phys. Rev. B 54, R8317 (1996)

    Article  ADS  Google Scholar 

  27. M.Z. Maialle et al., Phys. Rev. B 47, 15776 (1993)

    Article  ADS  Google Scholar 

  28. A.J. Leggett and F. Sols, Found. Phys. 21, 353 (1991)

    Article  ADS  Google Scholar 

  29. P.R, Eastham and P.B. Littlewood, Phys. Rev. B 64, 235101 (2001); M.H. Szymanska P.B. Littlewood and B.D. Simons Phys. Rev. A 68, 013818 (2003)

    Article  ADS  Google Scholar 

  30. H. Deng, G. Weihs, C. Santori, J. Bloch and Y. Yamamoto, Science, 298, 199 (2002)

    Article  ADS  Google Scholar 

  31. S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, Phys. Rev. B 32, 6601 (1985)

    Article  ADS  Google Scholar 

  32. D. Porras, C. Ciuti, J.J. Baumberg and C. Tejedor, Phys. Rev. B 66, 085304 (2002)

    Article  ADS  Google Scholar 

  33. C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann, Phys. Rev. B 55, 1333 (1997)

    Article  ADS  Google Scholar 

  34. F. Tassone and Y. Yamamoto, Phys. Rev. B 59, 10830 (1999)

    Article  ADS  Google Scholar 

  35. M. Holland, K. Burnett, C. Gardiner, J.I. Cirac and P. Zoller, Phys. Rev. A 54, R1757 (1996)

    Article  ADS  Google Scholar 

  36. P.G. Savvidis, J.J. Baumberg, D. Porras, D.M. Whittaker, M.S. Skolnick, and J.S. Roberts, Phys. Rev. B 65, 073309 (2002)

    Article  ADS  Google Scholar 

  37. Le Si Dang, D. Heger, R. André, F. Bœuf, and R. Romestain, Phys. Rev. Lett. 81, 3920 (1998)

    Article  ADS  Google Scholar 

  38. D.F. Walls and G.J. Milburn, Quantum optics, (Springer-Verlag, Berlin, 1994)

    MATH  Google Scholar 

  39. M.O. Scully and M.S. Zubairy, Quantum optics, (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  40. D. Porras and C. Tejedor, Phys. Rev. B 67, 161310(R) (2003)

    Article  ADS  Google Scholar 

  41. G.W. Gardiner Handbook of stochastic methods, Springer, Berlin (1996)

    Google Scholar 

  42. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, Phys. Rev. B 65, 161205 (2002)

    Article  ADS  Google Scholar 

  43. G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Phys. Rev. B 65, 153310 (2002)

    Article  ADS  Google Scholar 

  44. P.G. Lagoudakis, M.D. Martín, J.J. Baumberg, A. Qarry, E. Cohen, and L.N. Pfeiffer, Phys. Rev. Lett. 90, 206401 (2003)

    Article  ADS  Google Scholar 

  45. A.I. Tartakovskii, D.N. Krizhanovskii, G. Malpuech, M. Emam-Ismail, A.V. Chernenko, A.V. Kavokin, V.D. Kulakovskii, M.S. Skolnick and J.S. Roberts, Phys. Rev. B 67, 165302 (2003)

    Article  ADS  Google Scholar 

  46. M.D. Martín, G. Aichmayr, and L. Viña, Phys. Rev. Lett. 89, 077402 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter Pötz Ulrich Hohenester Jaroslav Fabian

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Porras, D., Fernandez-Rossier, J., Tejedor, C. Exciton and Polariton Condensation. In: Pötz, W., Hohenester, U., Fabian, J. (eds) Quantum Coherence. Lecture Notes in Physics, vol 689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11398448_5

Download citation

  • DOI: https://doi.org/10.1007/11398448_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30085-4

  • Online ISBN: 978-3-540-33205-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics