Skip to main content

Quantum Foam and Quantum Gravity Phenomenology

  • Chapter
  • First Online:
Planck Scale Effects in Astrophysics and Cosmology

Part of the book series: Lecture Notes in Physics ((LNP,volume 669))

Abstract

Our understanding of spacetime has undergone some major changes in the last hundred years. Before last century, spacetime was regarded as nothing more than a passive and static arena in which events took place. Early last century, Einstein's general relativity changed that viewpoint and promoted spacetime to an active and dynamical entity. Nowadays, many physicists also believe that spacetime, like all matter and energy, undergoes quantum fluctuations. Following John Wheeler, many of us think that space is composed of an everchanging arrangement of bubbles called spacetime foam, a.k.a. quantum foam. To understand the terminology, let us follow Wheeler and consider the following simplified analogy which he gave in a gravity conference at the University of North Carolina in 1957. Imagine yourself flying an airplane over an ocean. At high altitude the ocean appears smooth. But as you descend, it begins to show roughness. Close enough to the ocean surface, you see bubbles and foam. Analogously, spacetime appears smooth on a large scale, but on sufficiently small scales, it will appear rough and foamy, hence the term “spacetime foam.” Many physicists believe the foaminess is due to quantum fluctuations of spacetime, hence the alternative term “quantum foam.” If spacetime indeed undergoes quantum fluctuations, the fluctuations will show up when we measure a distance (or a time duration), in the form of uncertainties in the measurement. Conversely, if in any distance (or time duration) measurement, we cannot measure the distance (or time duration) precisely, we interpret this intrinsic limitation to spacetime measurements as resulting from fluctuations of spacetime itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.J. Ng, gr-qc/0305019, Mod. Phys. Lett. A18,1073 (2003).

    Google Scholar 

  2. G. Amelino-Camelia, Y.J. Ng, H. van Dam, gr-qc/0204077, Astropart. Phys. 19, 729 (2003).

    Article  Google Scholar 

  3. E.P. Wigner, Rev. Mod. Phys. 29, 255 (1957); H. Salecker and E.P. Wigner, Phys. Rev. 109, 571 (1958).

    Google Scholar 

  4. Y.J. Ng and H. van Dam, Mod. Phys. Lett. A9, 335 (1994); A10, 2801 (1995); in hep-th/9406110, Proc. of Fundamental Problems in Quantum Theory, eds. D.M. Greenberger and A. Zeilinger, Ann. New York Acad. Sci. 755, 579 (1995). Also see F. Karolyhazy, Nuovo Cimento A42, 390 (1966); T. Padmanabhan, Class. Quan. Grav. 4, L107 (1987); D.V. Ahluwalia, Phys. Lett. B339, 301 (1994); L.J. Garay, Int. J. Mod. Phys. A10, 145 (1995); and N. Sasakura, Prog. Theor. Phys. 102, 169 (1999).

    Google Scholar 

  5. L.H. Ford, Phys. Rev. D51, 1692 (1995).

    Google Scholar 

  6. L. Diosi and B. Lukas, Europhys. Lett. 34, 479 (1996).

    Article  Google Scholar 

  7. Y.J. Ng and H. van Dam, Europhys. Lett. 38, 401 (1997); gr-qc/0209021, Class. Quant. Grav. 20, 393 (2003). See also the second reference in [8].

    Google Scholar 

  8. Y.J. Ng and H. van Dam, gr-qc/9906003, Found. Phys. 30, 795 (2000); gr-qc/9911054, Phys. Lett. B477, 429 (2000).

    Google Scholar 

  9. Y.J. Ng, gr-qc/0201022, Int. J. Mod. Phys. D11, 1585 (2002).

    Google Scholar 

  10. G. ';t Hooft, in Salamfestschrift, edited by A. Ali et al. (World Scientific, Singapore, 1993), p. 284; L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995). Also see J.A. Wheeler, Int. J. Theor. Phys. 21, 557 (1982); J.D. Bekenstein, Phys. Rev. D7, 2333 (1973); S. Hawking, Comm. Math. Phys. 43, 199 (1975).

    Google Scholar 

  11. F. Scardigli and R. Casadio, hep-th/0307174, Class. Quant. Grav. 20, 3915 (2003).

    Article  Google Scholar 

  12. G. Amelino-Camelia, Nature 398, 216 (1999).

    Article  Google Scholar 

  13. L. Diosi and B. Lukacs, Phys. Lett. A142, 331 (1989).

    Google Scholar 

  14. C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), 1190.

    Google Scholar 

  15. Y.J. Ng, W. Christiansen, and H. van Dam, astro-ph/0302372, Astrophys. J. 591, L87 (2003).

    Article  Google Scholar 

  16. Y.J. Ng, gr-qc/0006105, Phys. Rev. Lett. 86, 2946 (2001), and (erratum) ibid 88, 139902-1 (2002); Y. J. Ng in hep-th/0010234, Proc. of OCPA 2000, eds. N.P. Chang et al. (World Scientific, Singapore, 2002), p. 235.

    Google Scholar 

  17. J.D. Barrow, Phys. Rev. D54, 6563 (1996).

    Google Scholar 

  18. N. Margolus and L.B. Levitin, Physica D120, 188 (1998).

    Google Scholar 

  19. S. Lloyd, Nature (London) 406, 1047 (2000).

    Article  Google Scholar 

  20. R.C. Myers and M.J. Perry, Ann. Phys. 172, 304 (1986).

    Article  Google Scholar 

  21. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar, Nature 393, 763 (1998); B.E. Schaefer, Phys. Rev. Lett. 82, 4964 (1999); S.D. Biller et al., ibid, 83, 2108 (1999).

    Google Scholar 

  22. Y.J. Ng, D.S. Lee, M.C. Oh, and H. van Dam, Phys. Lett. B507, 236 (2001); hep-ph/0010152 and references therein. The arXiv preprint is a more informative version of the paper in Phys. Lett. B.

    Google Scholar 

  23. R. Lieu and L.W. Hillman, astro-ph/0301184, Astrophys. J. 585, L77 (2003).

    Article  Google Scholar 

  24. R. Ragazzoni, M. Turatto, and W. Gaessler, astro-ph/0303043, Astrophys. J. 587, L1 (2003).

    Article  Google Scholar 

  25. E.S. Perlman, et al., 2002, Astro. J. 124, 2401 (2002).

    Article  Google Scholar 

  26. V. Radeka, Ann. Rev. Nucl. Part. Sci. 38, 217 (1988).

    Article  Google Scholar 

  27. K. Danzmann, Class. Quant. Grav. 13, A247 (1996).

    Article  Google Scholar 

  28. A. Abramovici, et. al., Science 256, 325 (1992).

    Google Scholar 

  29. I. Percival, Phys. World, March 1997, p.43; F. Benatti and R. Floreanini, quant-ph/0208164.

    Google Scholar 

  30. F. Benatti and R. Floreanini, quant-ph/0204094; L.B. Crowell, Found. Phys. 16, 281 (2003).

    Article  Google Scholar 

  31. R.Y. Chiao and A.D. Speliotopoulos, arXiv:gr-qc/0312096.

    Google Scholar 

  32. M. Kasevich and S. Chu, Appl. Phys. B54, 321 (1992).

    Google Scholar 

  33. M.A. Lawrence et al., J. Phys. G17, 733 (1991); N.N. Efimov et al., in 22nd Intl. Cosmic Ray Conf. (Dublin, 1991); D.J. Bird et al., Astrophys. J. 441, 144 (1995); M. Takeda et al., Phys. Rev. Lett. 81, 1163 (1998); A. Watson, in Proc. Snowmass Workshop, 126 (1996).

    Google Scholar 

  34. K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G.T. Zatsepin and V.A. Kuz';min, JETP Lett. 41, 78 (1966).

    Google Scholar 

  35. C.J. Cesarsky, Nucl. Phys. (Proc. Suppl.) B28, 51 (1992); L. Gonzalez-Mestres, physics/9704017; R. Aloisio, P. Blasi, P.L. Ghia, and A.F. Grillo, astro-ph/0001258; O. Bertolami and C.S. Carvalho, Phys. Rev. D61, 103002 (2000); H. Sato, astro-ph/0005218; T. Kifune, Astrophys. J. Lett. 518, L21 (1999); W. Kluzniak, astro-ph/9905308; S. Coleman and S.L. Glashow, Phys. Rev. D59, 116008 (1999); D. Colladay and A. Kostelecky, Phys. Rev. D55, 6760 (1997); R. Lieu, ApJ 568, L67 (2002); F.W. Stecker, astro-ph/0304527; M. Jankiewicz, R.V. Buniy, T.A. Kephart, and T.J. Weiler, hep-ph/0312221.

    Google Scholar 

  36. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos, Int. J. Mod. Phys. A12, 607 (1997).

    Google Scholar 

  37. G. Amelino-Camelia and T. Piran, hep-th/0006210; astro-ph/0008107.

    Google Scholar 

  38. R. Aloisio, P. Blasi, A. Galante, P.L. Ghia, and A.F. Grillo, Astropart. Phys. 19, 127 (2003).

    Article  Google Scholar 

  39. Y.J. Ng, talk given in the Huntsville Workshop 2002 (unpublished).

    Google Scholar 

  40. R. Aloisio, P. Blasi, A. Galante, and A.F. Grillo, astro-ph/0304050; R. Le Gallou, astro-ph/0304560.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jurek Kowalski-Glikman Giovanni Amelino-Camelia

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Jack Ng, Y. Quantum Foam and Quantum Gravity Phenomenology. In: Kowalski-Glikman, J., Amelino-Camelia, G. (eds) Planck Scale Effects in Astrophysics and Cosmology. Lecture Notes in Physics, vol 669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11377306_9

Download citation

Publish with us

Policies and ethics