Skip to main content

Interferometry as a Universal Tool in Physics

  • Chapter
  • First Online:
Planck Scale Effects in Astrophysics and Cosmology

Part of the book series: Lecture Notes in Physics ((LNP,volume 669))

Abstract

The wide range of applications of atomic interferometry and of laser interferometry in the search for quantum gravity induced effects is presented. These effects consists of the exploration of relativistic gravity theories, tests of the Einstein Equivalence principle, of searches for quantum gravity induced deviations of the ordinary dispersion relation and of the search for fundamental fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Feynman, R.B. Leighton, and M.L. Sands. Lectures on Physics, Vol. 3: Quantum Mechanics. Addison-Wesley, Reading, 1966.

    Google Scholar 

  2. I. Antoniadis. Physics with large extra dimensions and non-newtonian gravity at sub-mm distances.

    Google Scholar 

  3. G. Amelino-Camelia. Gravity-wave interferometers as probes of a low-energy effective quantum gravity. Phys. Rev., D 62:0240151, 2000.

    Article  Google Scholar 

  4. S. Schiller, C. Lämmerzahl, H. Müller, C. Braxmaier, S. Herrmann, and A. Peters. Experimental limits for low-frequency space-time fluctuations from ultrastable optical resonators. Phys. Rev., D 69:027504, 2004.

    Article  Google Scholar 

  5. T. Damour, F. Piazza, and G. Veneziano. Runaway dilaton and equivalence principle violations. Phys. Rev. Lett., 89:081601, 2002.

    Article  Google Scholar 

  6. T. Damour, F. Piazza, and G. Veneziano. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev., D 66:046007, 2002.

    Google Scholar 

  7. Ch. Bord&x00027;e and C. Lämmerzahl. Atomic interferometry as two-level particle scattering by a periodic potential. Ann. Physik (Leipzig), 8:83, 1999.

    Article  Google Scholar 

  8. O. Carnal and J. Mlynek. Young's double slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett., 66:2689, 1991.

    Article  PubMed  Google Scholar 

  9. F. Riehle, Th. Kisters, Witte A., J. Helmcke, and Ch.J. Bord&x00027;e. Optical ramsey spectroscopy in a rotating frame: Sagnac effect in a matter wave interferometer. Phys. Rev. Lett., 67:177, 1991.

    Article  PubMed  Google Scholar 

  10. A. Wicht, J.M. Hensley, E. Sarajlic, and S. Chu., In P. Gill, editor, Proceedings of the 6th Symposium on Frequency Standards and Metrology, p. 193. World Scientific, Singapore, 2002.

    Google Scholar 

  11. M. Kasevich and S. Chu. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett., 67:181, 1991.

    Article  PubMed  Google Scholar 

  12. S. Chu and M. Kasevich. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys., B 54:321, 1992.

    Article  Google Scholar 

  13. A. Peters, K.Y. Chung, and S. Chu. Measurement of gravitational acceleration by dropping atoms. Nature, 400:849, 1999.

    Article  Google Scholar 

  14. T.L. Gustavson, P. Bouyer, and M.A. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 78:2046, 1996.

    Article  Google Scholar 

  15. T.L. Gustavson, A. Landragin, and M.A. Kasevich. Rotation sensing with a dual atom-interferometer sagnac gyroscope. Class. Quantum Grav., 17:2385, 2000.

    Article  Google Scholar 

  16. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, and M.A. Kasevich. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev., A 65:033608, 2002.

    Article  Google Scholar 

  17. C. Jentsch, T. MĂĽller, E.M. Rasel, and W. Ertmer. High precision atom interferometry on ground and in space. Gen. Rel. Grav., 36:to appear, 2004.

    Google Scholar 

  18. C. Lämmerzahl. Atom interferometry and gravitomagnetism. In L. Iorio, editor, The Measurement of Gravitomagnetism: A Challenging Enterprise, page to be published. Nova Publishers, Hauppauge, N.Y., 2005.

    Google Scholar 

  19. Ch.J. Bord&x00027;e. Propagation of laser beams and of atomic systems. In J. Dalibard, J.M. Raimond, and J. Zinn-Justin, editors, Fundamental Systems in Quantum Optics, page North Holland, Amsterdam, 1992.

    Google Scholar 

  20. C. Lämmerzahl and Ch. Bord&x00027;e. Rabi oscillations in gravitational fields: exact solution. Phys. Lett., A 203:59, 1995.

    Article  Google Scholar 

  21. Ch. Bord&x00027;e and C. Lämmerzahl. Atom beam interferometry in gravitational fields: The beam splitting process. Gen. Rel. Grav., 31:635, 1999.

    Article  Google Scholar 

  22. Ch.J. Bord&x00027;e. Atomic interferometry with internal state labeling. Phys. Lett., A 140:10, 1989.

    Article  Google Scholar 

  23. C. Lämmerzahl. On the equivalence principle in quantum mechanics. Gen. Rel. Grav., 28:1043, 1996.

    Article  Google Scholar 

  24. D. Greenberger and A.W. Overhauser. Coherence effects in neutron diffraction and gravity experiments. Rev. Mod. Phys., 51:43, 1979.

    Article  Google Scholar 

  25. S. BaeĂźler, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, U. Schmidt, and H.E. Swanson. Improved tes of the equivalence principle for gravitational self-energy. Phys. Rev. Lett., 83:3585, 1999.

    Article  Google Scholar 

  26. C. Lämmerzahl. Minimal coupling and the equivalence principle in quantum mechanics. Acta Phys. Pol., 29:1057, 1998.

    Google Scholar 

  27. A.A. Michelson and H.G. Gale. The effect of the Earth';s rotation on the velocity of light. Nature, 115:566, 1925.

    Google Scholar 

  28. C.V. Heer. Interference of electromagnetic and matter waves in a nonpermanent gravitational field. Bull. Am. Phys. Soc., 6:393, 1961.

    Google Scholar 

  29. L.A. Page. Effect of Earth's rotation in neutron interferometry. Phys. Rev. Lett., 35:543, 1975.

    Article  Google Scholar 

  30. L.A. Page. Phase considerations in a rotating system. In Bonse U. and Rauch H., editors, Neutron Interferometry, p. 327. Clarendon Press, Oxford, 1979.

    Google Scholar 

  31. S.A. Werner, J.-L. Staudenmann, and R. Collella. Effect of Earth';s rotation on quantum mechanical phase of the neutron. Phys. Rev. Lett., 42:1103, 1979.

    Article  Google Scholar 

  32. D.K. Atwood, M.A. Horne, C.G. Shull, and J. Arthur. Neutron phase shift in a rotating two-crystal interferometer. Phys. Rev. Lett., 52:1673, 1984.

    Article  Google Scholar 

  33. F. Hasselbach and M. Nicklaus. An electron optical Sagnac effect. Physica, B 151:230, 1988.

    Google Scholar 

  34. F. Hasselbach and M. Nicklaus. Observation of the rotational phase shift of electron waves (Sagnac effect). In Conference on Foundations of Quantum Mechanics to celebrate 30 Years of the Aharonov-Bohm effect. 1989.

    Google Scholar 

  35. F. Hasselbach and M. Nicklaus. Sagnac effect with electrons: Observation of the rotational phase shift of electrons in vacuum. Phys. Rev., A 48:152, 1993.

    Article  PubMed  Google Scholar 

  36. J. Audretsch and K.P. Marzlin. Ramsey fringes in atomic interferometry: Measurability of the influence of space-time curvature. Phys. Rev., A 50:2080, 1994.

    Article  PubMed  Google Scholar 

  37. C.W. Misner, K. Thorne, and J.A. Wheeler. Gravitation. Freeman, San Francisco, 1973.

    Google Scholar 

  38. C.M. Will. Theory and Experiment in Gravitational Physics (Revised Edition). Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  39. C. Lämmerzahl. A Hamilton operator for quantum optics in gravitational fields. Phys. Lett., A 203:12, 1995.

    Article  Google Scholar 

  40. C. Kiefer and T.P. Singh. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev., D 44:1067, 1991.

    Article  Google Scholar 

  41. J. Audretsch and G. Schäfer. Quantum mechanics of electromagnetically bounded spin-1/2 particles in expanding universes: I. influence of the expansion. Gen. Rel. Grav., 9:243, 1978.

    Article  Google Scholar 

  42. E. Fischbach, B.S. Freeman, and W.K. Cheng. General relativistic effects in hydrogenic systems. Phys. Rev., D 23:2157, 1981.

    Article  Google Scholar 

  43. C. Lämmerzahl. Relativistic treatment of the Raman light pulse atom beam interferometer with applications in gravity theory. J. Physique II (France), 4:2089, 1994.

    Article  Google Scholar 

  44. B. Bertotti, L. Iess, and P. Tortora. A test of general relativity using radio links with the Cassini spacecraft. Nature, 425:374, 2003.

    Article  PubMed  Google Scholar 

  45. M.O. Scully, M.S. Zubairy, and M.P. Haugan. Proposed optical test of metric gravitation theories. Phys. Rev., A 24:2009, 1981.

    Article  Google Scholar 

  46. W. Schleich and O. Scully. General relativity and modern optics. In Grynberg G. and Stora R., editors, Tendances actuelles en physique atomique, Les Houches Session XXXVIII, p. 995. Elsevier Science Publishers, Amsterdam, 1984.

    Google Scholar 

  47. C. Lämmerzahl. The Einstein Equivalence Principle and the search for new physics. In D. Giulini, C. Kiefer, and C. Lämmerzahl, editors, QuantumGravity - From Theory to Experimental Search, Lect. Notes Phys. 631, 367 (2003).

    Google Scholar 

  48. J. Audretsch and C. Lämmerzahl. A new constructive axiomatic scheme for the geometry of space-time. In Majer U. and Schmidt H.-J., editors, Semantical Aspects of Space-Time Geometry, p. 21. BI Verlag, Mannheim, 1993.

    Google Scholar 

  49. U. Bleyer and D.-E. Liebscher. Mach';s principle and causal structure. In Barbour J. and Pfister H., editors, Mach';s Principle, From Newton';s Bucket to Quantum Gravity, p. 293. Birkhäuser, Boston, 1995.

    Google Scholar 

  50. C. Lämmerzahl. On the experimental foundation of the Maxwell equations. In A. Macias, J. Cervantes, and C. Lämmerzahl, editors, Recent Developments on Exact Solutions and Scalar Fields in Gravity, p. 295. Kluver Academic Plenum Publishers, New York, 2001.

    Google Scholar 

  51. A. Kostelecky and M. Mewes. Signals for Lorentz violation in electrodynamics. Phys. Rev., D 66:056005, 2002.

    Article  Google Scholar 

  52. C. Lämmerzahl. The geometry of matter fields. In deSabbata V. and Audretsch J., editors, Quantum Mechanics in Curved Space-Time, NATO ASI series, series B: Physics, volume 230, p. 23. Plenum Press, New York, 1990.

    Google Scholar 

  53. C. Lämmerzahl. A new quantum test theory for gravitational fields. In A. Garcias, C. Lämmerzahl, A. Macias, Matos T., and D. Nu nes, editors, Recent developments in gravitation and mathematical Physics, Proceedings of the 2nd Mexican School, pages http://kaluza.physik.uni-konstanz.de/SNP/Books.html. Science Network Publishing, Konstanz, 1997.

    Google Scholar 

  54. D.-E. Liebscher. The geometry of the Dirac equation. Ann. Physik (Leipzig), 42:35, 1985.

    Google Scholar 

  55. J. Audretsch, U. Bleyer, and C. Lämmerzahl. Testing Lorentz invariance with atomic beam interferometry. Phys. Rev., A 47:4632, 1993.

    Article  PubMed  Google Scholar 

  56. C. Lämmerzahl. Quantum tests of foundations of general relativity. Class. Quantum Grav., 14:13, 1998.

    Article  Google Scholar 

  57. V.A. Kostelecky and C.D. Lane. Constraints on Lorentz violation from clock-comparison experiments. Phys. Rev., D 60:116010, 1999.

    Article  Google Scholar 

  58. C. Lämmerzahl. Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A, A 228:223, 1997.

    Article  Google Scholar 

  59. M.P. Haugan. Energy conservation and the principle of equivalence. Ann. Phys., 118:156, 1979.

    Article  Google Scholar 

  60. D.S. Weiss, B.C. Young, and S Chu. Precision measurement of ħ/mcs based on photon recoil using laser-cooled atoms and atomic interferometry. Appl. Phys., B 59:217, 1994.

    Article  Google Scholar 

  61. P.R. Phillips. Seach of of spatial isotropy using a cyrogenic torsion pendulum. Phys. Rev. Lett., 59:1784, 1987.

    Article  PubMed  Google Scholar 

  62. G. Amelino-Camelia and C. Lämmerzahl. Quantum-gravity-motivated Lorentz-symmetry tests with laser interferometers. Class. Quantum Grav., 21:to appear, 2004.

    Google Scholar 

  63. R.Y. Chiao. Towards MIGO, the Matter-wave Interferometric Gravitational-wave Observatory, and the intersection of quantum mechanics with general relativity. gr-qc/0312096.

    Google Scholar 

  64. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar. Tests of quantum gravity from observations of gamma-ray bursts. Nature, 393:763, 1998.

    Article  Google Scholar 

  65. C.J. Isham. Conceptual and geometrical problems in quantum gravity. In Mitter H. and Gaustere H., editors, Recent Aspects of Quantum Fields, p. 123. Springer Verlag, Berlin, 1991.

    Google Scholar 

  66. S.W. Hawking. The unpredictability of quantum gravity. Comm. Math. Phys., 87:395, 1982.

    Article  Google Scholar 

  67. J. Ellis, S. Hagelin, D.V. Nanopoulos, and M. Srednicki. Search for violations of quantum mechanics. Nucl. Phys., B 241:381, 1984.

    Article  Google Scholar 

  68. C. Percival. Quantum space-time fluctuations and primary state diffusion. preprint, quant-ph/9508021, 1995.

    Google Scholar 

  69. I.P. Percival and W.T. Strunz. Detection of space-time fluctuations by a model matter interferometer. Proc. Roy. Soc. London, A 453:431, 1996.

    Google Scholar 

  70. J. Audretsch and C. Lämmerzahl. New interial and gravitational effects made measureable by atom beam interferometry. Appl. Phys., B 54:351, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jurek Kowalski-Glikman Giovanni Amelino-Camelia

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lämmerzahl, C. Interferometry as a Universal Tool in Physics. In: Kowalski-Glikman, J., Amelino-Camelia, G. (eds) Planck Scale Effects in Astrophysics and Cosmology. Lecture Notes in Physics, vol 669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11377306_6

Download citation

Publish with us

Policies and ethics