Skip to main content

Euclidean Quantum Field Theory on Commutative and Noncommutative Spaces

  • Chapter
  • First Online:
Geometric and Topological Methods for Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 668))

  • 679 Accesses

Abstract

I give an introduction to Euclidean quantum field theory from the point of view of statistical physics, with emphasis both on Feynman graphs and on the Wilson-Polchinski approach to renormalisation. In the second part I discuss attempts to renormalise quantum field theories on noncommutative spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. N. Bogolyubov, D. V. Shirkov, “Introduction to the theory of quantized fields,” Interscience (1959).

    Google Scholar 

  2. C. Itzykson, J.-B. Zuber, “Quantum field theory,” McGraw-Hill (1980).

    Google Scholar 

  3. K. G. Wilson, J. B. Kogut, “The Renormalization Group And The Epsilon Expansion,”Phys. Rept. 12, 75 (1974).

    Article  Google Scholar 

  4. J. Glimm, A. Jaffe, “Quantum Physics: a functional integral point of view,” Springer-Verlag (1981).

    Google Scholar 

  5. H. Grosse, “Models in statistical physics and quantum field theory,” Springer-Verlag (1988).

    Google Scholar 

  6. K. Osterwalder, R. Schrader, “Axioms For Euclidean Green’s Functions. I, II,”Commun. Math. Phys. 31, 83 (1973); 42, 281 (1975).

    Article  Google Scholar 

  7. G. Roepstorff, “Path integral approach to quantum physics: an introduction,” Springer-Verlag (1994).

    Google Scholar 

  8. B. Simon, “The P(Φ)2 Euclidean (Quantum) Field Theory,”Princeton University Press (1974).

    Google Scholar 

  9. G. Velo, A. S. Wightman (eds), “Renormalization Theory,”Reidel (1976).

    Google Scholar 

  10. W. Zimmermann, “Convergence Of Bogolyubov’s Method Of Renormalization In Momentum Space,”Commun. Math. Phys. 15, 208 (1969)[Lect. Notes Phys. 558, 217 (2000)].

    Article  Google Scholar 

  11. A. Connes, D. Kreimer, “Renormalization in quantum field theory and the Riemann-Hilbertproblem. I: The Hopf algebra structure of graphs and the main theorem,” Commun. Math Phys. 210, 249 (2000) [arXiv:hep-th/9912092].

    Article  Google Scholar 

  12. A. Connes, D. Kreimer, “Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The beta-function, diffeomorphisms and the renormalization group,”Commun. Math. Phys. 216, 215 (2001) [arXiv:hep-th/0003188].

    Google Scholar 

  13. J. Polchinski,“Renormalization And Effective Lagrangians,”Nucl. Phys. B 231, 269 (1984).

    Article  Google Scholar 

  14. M. Salmhofer, “Renormalization: An Introduction,” Springer-Verlag (1998).

    Google Scholar 

  15. S. Doplicher, K. Fredenhagen, J. E. Roberts, “The Quantum structure of space-time at the Planck scale and quantum fields,” Commun. Math. Phys. 172, 187 (1995) [arXiv:hep-th/0303037].

    Google Scholar 

  16. E. Schrödinger, “XÜber die Unanwendbarkeit der Geometrie im Kleinen,” Naturwiss.31, 342 (1934).

    Google Scholar 

  17. A. Connes, “Noncommutative geometry,” Academic Press (1994).

    Google Scholar 

  18. S. Minwalla, M. Van Raamsdonk, N. Seiberg, “Noncommutative perturbative dynamics,” JHEP0002, 020 (2000) [arXiv:hep-th/9912072].

    Article  Google Scholar 

  19. N. Seiberg, E. Witten, “String theory and noncommutative geometry,” JHEP 9909, 032 (1999) [arXiv:hep-th/9908142].

    Article  Google Scholar 

  20. V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, J. C. Várilly, “Moyal planes are spectral triples,” Commun. Math. Phys. 246, 569 (2004) [arXiv:hep-th/0307241].

    Article  Google Scholar 

  21. I. Chepelev, R. Roiban, “Renormalization of quantum field theories on noncommutative Rd. I: Scalars,” JHEP 0005, 037 (2000) [arXiv:hep-th/9911098].

    Article  Google Scholar 

  22. T. Filk, “Divergencies In A Field Theory On Quantum Space,” Phys. Lett. B 376, 53 (1996).

    Article  CAS  Google Scholar 

  23. I. Chepelev, R. Roiban, “Convergence theorem for non-commutative Feynman graphs and renormalization,” JHEP 0103, 001 (2001) [arXiv:hep-th/0008090].

    Article  Google Scholar 

  24. Grosse, H., Wulkenhaar, R.: Renormalisation of 4 theory on noncommutative 4 to all orders. To appear in Lett. Math. Phys., http://arxiv.org/abs/hepth/0403232, 2004

    Google Scholar 

  25. H. Grosse, R. Wulkenhaar, “Renormalisation of Φ4 theory on noncommutative R2in the matrix base,” JHEP 0312, 019 (2003) [arXiv:hep-th/0307017].

    Article  Google Scholar 

  26. E. Langmann, R. J. Szabo, K. Zarembo, “Exact solution of noncommutative field theory in background magnetic fields,” Phys. Lett. B 569, 95 (2003) [arXiv:hep-th/0303082].

    Article  CAS  Google Scholar 

  27. E. Langmann, R. J. Szabo, K. Zarembo, “Exact solution of quantum field theory on noncommutative phase spaces,” JHEP 0401, 017 (2004) [arXiv:hep-th/0308043].

    Article  Google Scholar 

  28. Grosse, H.,Wulkenhaar, R.: The -function in duality-covariant noncommutative 4-theory. Eur. Phys. J. C 35, 277–282 (2004)

    CAS  Google Scholar 

  29. R. Koekoek, R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,”arXiv:math.CA/9602214.

    Google Scholar 

  30. J. P. M. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq, J. P. Uzan, “Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background,” Nature 425, 593 (2003) [arXiv:astro-ph/0310253].

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hernán Ocampo Sylvie Paycha Andrés Vargas

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wulkenhaar, R. Euclidean Quantum Field Theory on Commutative and Noncommutative Spaces. In: Ocampo, H., Paycha, S., Vargas, A. (eds) Geometric and Topological Methods for Quantum Field Theory. Lecture Notes in Physics, vol 668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11374060_2

Download citation

Publish with us

Policies and ethics