Advertisement

The Frenkel–Kontorova Model

  • L.M. Floría
  • C Baesens
  • J. Gómez-Gardeñes
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 671)

Abstract

In the preface to his monograph on the structure of Evolutionary Theory [1], the late professor Stephen Jay Gould attributes to the philosopher Immanuel Kant the following aphorism in Science Philosophy: “Percepts without concepts are blind; concepts without percepts are empty”. Using with a bit of freedom these Kantian terms, one would say that a scientific model is a framework (or network) of interrelated concepts and percepts where experts build up scientific consistent explanations of a given set of observations. Good models are those which are both, conceptually simple and universal in their perceptions. Let us illustrate with examples the meaning of this statement.

Keywords

Coupling Parameter Kontorova Model Threshold Coupling Distribution Centroid Base Pair Opening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Gould The Structure of Evolutionary Theory (Harvard University Press, Cambridge 2002).Google Scholar
  2. 2.
    P.M. Chaikin and T.C. Lubensky Principles of condensed matter physics (Cambridge University Press, Cambridge 1995).Google Scholar
  3. 3.
    O.M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova model (Springer, New York 2004).Google Scholar
  4. 4.
    D.K. Campbell, S. Flach, and Yu. S. Kivshar, Phys. Tod. 57, 43 (2004).Google Scholar
  5. 5.
    J.J. Mazo, in Energy Localisation and Transfer, edited by T. Dauxois, A. Litvak-Hinenzon, R.S. Mackay and A. Spanoudaki (Singapore: World Scientific) 2003.Google Scholar
  6. 6.
    S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, and T. Orlando, Physica D 97, 429 (1996).CrossRefGoogle Scholar
  7. 7.
    F. Falo, P.J. Martínez, J.J. Mazo, T.P. Orlando, K. Segall and E. Trías, Appl. Phys. A 75, 263 (2002).CrossRefGoogle Scholar
  8. 8.
    M. Peyrard and A.R. Bishop, Phys. Rev. Let. 62, 2755 (1989).CrossRefGoogle Scholar
  9. 9.
    Th. Dauxois, M. Peyrard and A.R. Bishop Phys. Rev. E 47, 684 (1993).CrossRefGoogle Scholar
  10. 10.
    J.D. Weeks et al. arXiv:cond-mat/0406246v1 (2004).Google Scholar
  11. 11.
    M. Ridley Evolution (second edition) (Blackwell, Cambridge 1996).Google Scholar
  12. 12.
    S. Aubry and P.Y. Le Daeron, Physica D 8, 381 (1983).CrossRefGoogle Scholar
  13. 13.
    S. Aubry, inStructures et Instabilités,edited by C. Gdrèche (Les Ulis, France: Editions de Physique) 1985.Google Scholar
  14. 14.
    R.S. Mackay, Ph.D. thesis, Princeton University. Reprinted version in: R.S. Mackay, Renormalisation in Area-preserving Maps, (Singapore: World Scientific) 1993; Physica D 50, 71 (1991).Google Scholar
  15. 15.
    A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, (Oxford: Oxford University Press) 1999.Google Scholar
  16. 16.
    A. Scott (editor), Encyclopedia of Nonlinear Science, (New York:Taylor and Francis) 2004.Google Scholar
  17. 17.
    C. Baesens, Variational problems in solid state physics, (unpublished) Lecture Notes (University of Warwick, 1994).Google Scholar
  18. 18.
    A. Katok and B Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge: CUP, 1995).Google Scholar
  19. 19.
    C. Golé, Symplectic Twist Maps: Global Variational Techniques (Advanced Series in Nonlinear Dynamics vol 18) (Singapore: World Scientific, 2001)Google Scholar
  20. 20.
    A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992).CrossRefPubMedGoogle Scholar
  21. 21.
    L.M. Floría and J.J. Mazo, Adv. Phys. 45, 505 (1996).Google Scholar
  22. 22.
    C. Baesens and R.S. Mackay, Nonlinearity 11, 949 (1998).CrossRefGoogle Scholar
  23. 23.
    C. Baesens and R.S. Mackay, Nonlinearity 17, 949 (2004).CrossRefGoogle Scholar
  24. 24.
    L. Kuipers and H. Niederreiter Uniform distribution of sequences (John Wiley and Sons, New York 1974).Google Scholar
  25. 25.
    Appl. Phys A75 (2002), special issue on “Ratchets and Brownian motors'', guest ed. H. Linke.Google Scholar
  26. 26.
    L.H. Tang, Ph.D. Thesis, (Carnegie-Mellon University 1987); L.H. Tang and R.B. Griffiths J. Stat. Phys. 53, 853 (1988).Google Scholar
  27. 27.
    L.M. Floría, F. Falo, P.J. Martínez and J.J. Mazo, Europhys. Lett. 60, 174 (2002).CrossRefGoogle Scholar
  28. 28.
    L.M. Floría, P.J. Martínez, S. Flach and M.V. Fistul, Physica D, 187, 100 (2004).CrossRefGoogle Scholar

Authors and Affiliations

  • L.M. Floría
    • 1
  • C Baesens
    • 2
  • J. Gómez-Gardeñes
    • 3
  1. 1.Dpt. of Theory and Simulation of Complex Systems, ICMACSIC-Universidad de ZaragozaE-50009 ZaragozaSpain
  2. 2.Mathematics InstituteUniversity of Warwick.Coventry CV4 7ALUK
  3. 3.Instituto de Biocomputación y Física de Sistemas Complejos, and Dpto. de Física de la Materia CondensadaUniversidad de ZaragozaE-50009 Zaragoza,Spain

Personalised recommendations