Skip to main content

Indecomposable Coupled Map Lattices with Non–unique Phase

  • Chapter
  • First Online:
Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 671))

Abstract

A compact topologically mixing uniformly hyperbolic attractor for a diffeomorphism of a finite-dimensional manifold with Hölder continuous derivative carries a unique probability measure describing the long-time statistics of the forward orbits of almost all initial conditions in its basin. This was proved [28] by converting the orbits of the dynamical system into symbol sequences from a finite alphabet (indexed by time) and considering them as states of a statistical mechanical spin chain with a certain interaction energy which decays exponentially with separation, so leading to a unique phase. The results have been extended to many classes of non-uniformly hyperbolic system by different approaches (e.g. [30]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-B. Bardet, Limit theorems for coupled analytic maps, Probab. Th. Rel. Fields 124 (2002) 151–177.

    Article  Google Scholar 

  2. C. Beck, Spatio-temporal chaos and vacuum fluctuations of quantized fields (World Sci, 2002).

    Google Scholar 

  3. C. Bennett, G. Grinstein, Role of irreversibility in stabilizing complex and nonergodic behaviour in locally interacting discrete systems, Phys. Rev. Lett. 55 (1985) 657–660.

    Article  PubMed  Google Scholar 

  4. J. Bricmont, A. Kupiainen, High temperature expansions and dynamical systems, Commun. Math. Phys. 178 (1996) 703–32.

    Google Scholar 

  5. L. A. Bunimovich, Ya. G. Sinai, Space-time chaos in coupled map lattices, Nonlinearity 1 (1988) 491–516.

    Article  Google Scholar 

  6. R. Burton R. J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type, Erg. Th. Dyn. Sys. 14 (1994) 213–35.

    Google Scholar 

  7. H. Chaté, P. Manneville, Collective behaviors in spatially extended systems with local interactions and synchronous updating, Prog. Theor. Phys. 87 (1992) 1–60.

    Google Scholar 

  8. J. P. Crutchfield, K. Kaneko, Are attractors relevant to turbulence?, Phys. Rev. Lett. 60 (1988) 2715–8.

    Article  PubMed  Google Scholar 

  9. P. Gacs, Reliable cellular automata with self-organization, J. Stat. Phys. 103 (2001) 45–267.

    Article  Google Scholar 

  10. G. Gielis, R. S. MacKay, Coupled map lattices with phase transition, Nonlinearity 13 (2000) 867–888.

    Article  Google Scholar 

  11. F. Ginelli, R. Livi, A. Politi, Emergence of chaotic behaviour in linearly stable systems, J. Phys. A 35 (2002) 499–516.

    Article  MathSciNet  Google Scholar 

  12. L. F. Gray, A reader's guide to Gacs' “positive rates'' paper, J. Stat. Phys. 103 (2001) 1–44.

    Article  Google Scholar 

  13. H. Haken, Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems, Rev. Mod. Phys. 47 (1975) 67–121.

    Article  Google Scholar 

  14. M. Jiang, Ya. B. Pesin, Equilibrium measures for coupled map lattices: existence, uniqueness and finite dimensional approximations, Commun. Math. Phys. 193 (1998) 677–711.

    Article  Google Scholar 

  15. K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled map lattices, Prog. Theor. Phys. 72 (1984) 480–486.

    Google Scholar 

  16. K. Kaneko, Globally coupled chaos violates the law of large numbers, Phys. Rev. Lett. 65 (1990) 1391–4.

    Article  PubMed  Google Scholar 

  17. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems (Cambridge Univ Press, 1995).

    Google Scholar 

  18. F. P. Kelly, Reversibility and stochastic networks (Wiley, 1979).

    Google Scholar 

  19. Y. Kuramoto, Cooperative dynamics of oscillator community, Prog. Theor. Phys. 79 (1984) 223–240.

    Google Scholar 

  20. J. L. Lebowitz, C. Maes, E. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59 (1990) 117–70.

    Article  Google Scholar 

  21. T. M. Liggett, Interacting particle systems (Springer, 1985).

    Google Scholar 

  22. J. Losson, M. C. Mackey, Thermodynamic properties of coupled map lattices, in: Stochastic and spatial structures of dynamical systems, eds. S. J. van Strien, S. M. Verduyn Lunel (North Holland, 1996), 41–69.

    Google Scholar 

  23. R. S. MacKay, Dynamics of networks: features that persist from the uncoupled limit, in “Stochastic and spatial structures of dynamical systems'', eds. S. J. van Strien, S. M. Verduyn Lunel (North Holland, 1996), 81–104.

    Google Scholar 

  24. J. Miller, D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled map lattice, Phys. Rev. E 48 (1993) 2528–35.

    Article  Google Scholar 

  25. R. Penrose, The road to reality (Random House, 2004)

    Google Scholar 

  26. Ya. B. Pesin, Ya. G. Sinai, Space-time chaos in chains of weakly coupled interacting hyperbolic mappings, Adv Sov Math 3 (1991) 165–198.

    Google Scholar 

  27. H. Sakaguchi, Phase transition in coupled Bernoulli maps, Prog. Theor. Phys. 80 (1988) 7–12.

    Google Scholar 

  28. Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surv. 27:4 (1972) 21–69.

    Google Scholar 

  29. A. L. Toom, N. B. Vasilyev, O. N. Stavskaya, L. G. Mityushin, G. L. Kurdyumov, S. A. Pirogov, Discrete local Markov systems. In: Stochastic cellular systems, ergodicity, memory, morphogenesis, eds R. L. Dobrushin, V. I. Kryukov, A. L. Toom (Manchester Univ Press, 1990), 1–182.

    Google Scholar 

  30. M. Viana, Stochastic dynamics of deterministic systems (Instituto de Matematica Pura e Aplicada, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

MacKay, R. Indecomposable Coupled Map Lattices with Non–unique Phase. In: Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Lecture Notes in Physics, vol 671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11360810_4

Download citation

Publish with us

Policies and ethics