Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 671))

Abstract

Coupled map lattices are a paradigm for studying fundamental questions in spatially extended dynamical systems. Within this tutorial we focus on qualitative changes of the motion which are intimately related with the limit of large system size. Similar to equilibrium phase transitions, such qualitative changes are an ubiquitous feature of dynamical systems with a large number of degrees of freedom. Within the first section of this chapter we present an overview and some phenomenological facts of phase transitions in coupled map lattices. The following two sections describe in some details analytical tools which are useful for understanding phase transition behaviour in dynamical systems beyond plain numerical simulations. In Sect. 2 we explain how coupled map lattices are linked with the canonical equilibrium physics of spin systems when techniques of symbolic dynamics are applied. Using a simple model we explain how coupled map lattices are linked with phase transitions in equilibrium spin models. In the third section we describe an alternative approach in terms of kinetic spin models linking the dynamics of coupled map lattices with equilibrium and nonequilibrium statistical mechanics. We keep our presentation throughout this tutorial entirely elementary and confine the presentation to some basic concepts which are useful for tackling the analysis of phase transitions in extended dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. C. Cross and P. C. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).

    Article  Google Scholar 

  2. J. P. Crutchfield and K. Kaneko, in Directions in Chaos, edited by H. Bai-Lin (World Scientific Publ., Singapore, 1987), p. 272.

    Google Scholar 

  3. K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D 34, 1 (1989).

    Article  MathSciNet  Google Scholar 

  4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1986).

    Google Scholar 

  5. H. Haken, Synergetics (Springer, Berlin, 1977).

    Google Scholar 

  6. G. Gielis and R. S. MacKay, Coupled map lattices with phase transition, Nonlin. 13, 867 (2000).

    Google Scholar 

  7. K. Kaneko, Theory and applications of coupled map lattices (Wiley, Chichester, 1993).

    Google Scholar 

  8. L. A. Bunimovich and Y. G. Sinai, Spacetime chaos in coupled map lattices, Nonlin. 1, 491 (1988).

    Article  Google Scholar 

  9. J. Bricmont and A. Kupiainen, Coupled analytic maps, Nonlin. 8, 379 (1995).

    Article  Google Scholar 

  10. C. Maes and A. V. Moffaert, Stochastic stability of weakly coupled lattice maps, Nonlin. 10, 715 (1997).

    Article  Google Scholar 

  11. T. Fischer and H. H. Rugh, Transfer operators for coupled analytic maps, Erg. Theor. Dyn. Syst. 20, 109 (2000).

    Article  Google Scholar 

  12. Collective dynamics of nonlinear and disordered systems, edited by G. Radons, P. Häussler, and W. Just (Springer, Berlin, 2004).

    Google Scholar 

  13. K. Kaneko, Mean field fluctuation of a network of chaotic elements, Physica D 55, 368 (1992).

    Article  Google Scholar 

  14. K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65, 1391 (1990).

    Article  PubMed  Google Scholar 

  15. E. Järvenpää, A SRB-measure for globally coupled circle maps, Nonlin. 10, 1435 (1997).

    Article  Google Scholar 

  16. S. V. Ershov and A. B. Potapov, On the mean field fluctuations in globally coupled maps, Physica D 86, 523 (1995).

    Article  Google Scholar 

  17. T. Chawanya and S. Morita, On the bifurcation structure of the mean-field fluctuation in the globally coupled tent map system, Physica D 116, 44 (1998).

    Article  Google Scholar 

  18. G. Keller, An ergodic theoretic approach to mean field coupled maps, Prog. Prob. 46, 183 (2000).

    Google Scholar 

  19. W. Just, Globally coupled maps: phase transitions and synchronization, Physica D 81, 317 (1995).

    Article  Google Scholar 

  20. K. Kaneko, Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos, Phys. Lett. A 149, 105 (1990).

    Article  Google Scholar 

  21. F. Schmüser, W. Just, and H. Kantz, On the relation between coupled map lattices and kinetic Ising models, Phys. Rev. E 61, 3675 (2000).

    Article  Google Scholar 

  22. J. Miller and D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled map lattice, Phys. Rev. E 48, 2528 (1993).

    Article  Google Scholar 

  23. H. Sakaguchi, Phase transition in coupled Bernoulli maps, Prog. Theor. Phys. 80, 7 (1988).

    Google Scholar 

  24. P. Marcq, H. Chaté, and P. Manneville, Universality in Ising-like phase transitions of coupled chaotic maps, Phys. Rev. E 55, 2606 (1997).

    Article  Google Scholar 

  25. A. Lemaître and H. Chaté, Phase ordering and onset of collective behavior in chaotic coupled map lattices, Phys. Rev. Lett. 82, 1140 (1999).

    Article  Google Scholar 

  26. X. J. Wang, Statistical physics of temporal intermittency, Phys. Rev. A 40, 6647 (1989).

    Article  PubMed  Google Scholar 

  27. C. S. Hsu, Cell-to-cell mapping : a method of global analysis for nonlinear systems (Springer, New York, 1987).

    Google Scholar 

  28. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, Chaos 7, 221 (1997).

    Article  PubMed  Google Scholar 

  29. M. Dörfle, Spectrum and eigenfunctions for the Frobenius-Perron operator of the tent map, J. Stat. Phys. 40, 93 (1985).

    Article  Google Scholar 

  30. S. Morita, Bifurcations in globally coupled chaotic maps, Phys. Lett. A 211, 258 (1996).

    Article  Google Scholar 

  31. C. Beck and F. Schlögl, Thermodynamics of chaotic systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  32. W. Just, in Collective dynamics of nonlinear and disordered systems, edited by G. Radons, P. Häussler, and W. Just (Springer, Berlin, 2004).

    Google Scholar 

  33. K. Falconer, Techniques in fractal geometry (Wiley, Chicester, 1997).

    Google Scholar 

  34. A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer, New York, 1994).

    Google Scholar 

  35. H. Mori, B. S. So, and T. Ose, Time-correlation functions of one-dimensional transformations, Prog. Theor. Phys. 66, 1266 (1981).

    Google Scholar 

  36. T. Bohr and D. Rand, The entropy function for characteristic exponents, Physica D 25, 387 (1987).

    Article  Google Scholar 

  37. G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Trans. Amer. Math. Soc. 252, 351 (1979).

    Google Scholar 

  38. R. Bowen, in Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Vol. 470 of Lecture Notes in Mathematics, edited by A. Dold and B. Eckmann (Springer, Berlin, 1975).

    Google Scholar 

  39. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33, 1141 (1986).

    Article  PubMed  Google Scholar 

  40. P. Grassberger, R. Badii, and A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors, J. Stat. Phys. 51, 135 (1988).

    Article  Google Scholar 

  41. W. Just and H. Fujisaka, Gibbs Measures and Power Spectra for Type I Intermittent Maps, Physica D 64, 98 (1993).

    Article  Google Scholar 

  42. C. Robinson, Dynamical systems : stability, symbolic dynamics, and chaos (CRC Press, Boca Raton, 1995).

    Google Scholar 

  43. R. Artuso, E. Aurell, and P. Cvitanović, Recycling of strange sets, Nonlin. 3, 325 (1990).

    Article  Google Scholar 

  44. D. Ruelle, Thermodynamic formalism (Addison-Wesley, Reading, 1978).

    Google Scholar 

  45. W. Just, Equilibrium phase transitions in coupled map lattices: a pedestrian approach,, J. Stat. Phys. 105, 133 (2001).

    Article  Google Scholar 

  46. C. Grebogi, E. Ott, and J. A. Yorke, Crisis sudden changes in chaotic attractors and transient chaos, Physica D 7, 181 (1983).

    Article  Google Scholar 

  47. E. Fick and G. Sauermann, The quantum statistics of dynamic processes (Springer, Berlin, 1990).

    Google Scholar 

  48. W. Just, Projection operator approach to the thermodynamic formalism of dynamical systems, J. Stat. Phys. 67, 271 (1992).

    Article  Google Scholar 

  49. R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4, 294 (1963).

    Article  Google Scholar 

  50. K. Kawasaki, in Phase Transitions and Critical Phenomena, edited by C. Domb (Academic Press, London, 1972), p. 443.

    Google Scholar 

  51. F. P. Kelly, Reversibility and Stochastic Networks (Wiley, Chichester, 1979).

    Google Scholar 

  52. F. Schmüser and W. Just, Non-equilibrium behaviour in unidirectionally coupled map lattices, J. Stat. Phys. 105, 525 (2001).

    Article  Google Scholar 

  53. Nonequilibrium Statistical Mechanics in One Dimension, edited by V. Privman (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Just, W., Schmüser, F. On Phase Transitions in Coupled Map Lattices. In: Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Lecture Notes in Physics, vol 671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11360810_3

Download citation

Publish with us

Policies and ethics