Advertisement

On Phase Transitions in Coupled Map Lattices

  • W Just
  • F Schmüser
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 671)

Abstract

Coupled map lattices are a paradigm for studying fundamental questions in spatially extended dynamical systems. Within this tutorial we focus on qualitative changes of the motion which are intimately related with the limit of large system size. Similar to equilibrium phase transitions, such qualitative changes are an ubiquitous feature of dynamical systems with a large number of degrees of freedom. Within the first section of this chapter we present an overview and some phenomenological facts of phase transitions in coupled map lattices. The following two sections describe in some details analytical tools which are useful for understanding phase transition behaviour in dynamical systems beyond plain numerical simulations. In Sect. 2 we explain how coupled map lattices are linked with the canonical equilibrium physics of spin systems when techniques of symbolic dynamics are applied. Using a simple model we explain how coupled map lattices are linked with phase transitions in equilibrium spin models. In the third section we describe an alternative approach in terms of kinetic spin models linking the dynamics of coupled map lattices with equilibrium and nonequilibrium statistical mechanics. We keep our presentation throughout this tutorial entirely elementary and confine the presentation to some basic concepts which are useful for tackling the analysis of phase transitions in extended dynamical systems.

Keywords

Phase Transition Invariant Measure Symbolic Dynamic Symbol Sequence Trapping Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Cross and P. C. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).CrossRefGoogle Scholar
  2. 2.
    J. P. Crutchfield and K. Kaneko, in Directions in Chaos, edited by H. Bai-Lin (World Scientific Publ., Singapore, 1987), p. 272.Google Scholar
  3. 3.
    K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D 34, 1 (1989).CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1986).Google Scholar
  5. 5.
    H. Haken, Synergetics (Springer, Berlin, 1977).Google Scholar
  6. 6.
    G. Gielis and R. S. MacKay, Coupled map lattices with phase transition, Nonlin. 13, 867 (2000).Google Scholar
  7. 7.
    K. Kaneko, Theory and applications of coupled map lattices (Wiley, Chichester, 1993).Google Scholar
  8. 8.
    L. A. Bunimovich and Y. G. Sinai, Spacetime chaos in coupled map lattices, Nonlin. 1, 491 (1988).CrossRefGoogle Scholar
  9. 9.
    J. Bricmont and A. Kupiainen, Coupled analytic maps, Nonlin. 8, 379 (1995).CrossRefGoogle Scholar
  10. 10.
    C. Maes and A. V. Moffaert, Stochastic stability of weakly coupled lattice maps, Nonlin. 10, 715 (1997).CrossRefGoogle Scholar
  11. 11.
    T. Fischer and H. H. Rugh, Transfer operators for coupled analytic maps, Erg. Theor. Dyn. Syst. 20, 109 (2000).CrossRefGoogle Scholar
  12. 12.
    Collective dynamics of nonlinear and disordered systems, edited by G. Radons, P. Häussler, and W. Just (Springer, Berlin, 2004).Google Scholar
  13. 13.
    K. Kaneko, Mean field fluctuation of a network of chaotic elements, Physica D 55, 368 (1992).CrossRefGoogle Scholar
  14. 14.
    K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65, 1391 (1990).CrossRefPubMedGoogle Scholar
  15. 15.
    E. Järvenpää, A SRB-measure for globally coupled circle maps, Nonlin. 10, 1435 (1997).CrossRefGoogle Scholar
  16. 16.
    S. V. Ershov and A. B. Potapov, On the mean field fluctuations in globally coupled maps, Physica D 86, 523 (1995).CrossRefGoogle Scholar
  17. 17.
    T. Chawanya and S. Morita, On the bifurcation structure of the mean-field fluctuation in the globally coupled tent map system, Physica D 116, 44 (1998).CrossRefGoogle Scholar
  18. 18.
    G. Keller, An ergodic theoretic approach to mean field coupled maps, Prog. Prob. 46, 183 (2000).Google Scholar
  19. 19.
    W. Just, Globally coupled maps: phase transitions and synchronization, Physica D 81, 317 (1995).CrossRefGoogle Scholar
  20. 20.
    K. Kaneko, Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos, Phys. Lett. A 149, 105 (1990).CrossRefGoogle Scholar
  21. 21.
    F. Schmüser, W. Just, and H. Kantz, On the relation between coupled map lattices and kinetic Ising models, Phys. Rev. E 61, 3675 (2000).CrossRefGoogle Scholar
  22. 22.
    J. Miller and D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled map lattice, Phys. Rev. E 48, 2528 (1993).CrossRefGoogle Scholar
  23. 23.
    H. Sakaguchi, Phase transition in coupled Bernoulli maps, Prog. Theor. Phys. 80, 7 (1988).Google Scholar
  24. 24.
    P. Marcq, H. Chaté, and P. Manneville, Universality in Ising-like phase transitions of coupled chaotic maps, Phys. Rev. E 55, 2606 (1997).CrossRefGoogle Scholar
  25. 25.
    A. Lemaître and H. Chaté, Phase ordering and onset of collective behavior in chaotic coupled map lattices, Phys. Rev. Lett. 82, 1140 (1999).CrossRefGoogle Scholar
  26. 26.
    X. J. Wang, Statistical physics of temporal intermittency, Phys. Rev. A 40, 6647 (1989).CrossRefPubMedGoogle Scholar
  27. 27.
    C. S. Hsu, Cell-to-cell mapping : a method of global analysis for nonlinear systems (Springer, New York, 1987).Google Scholar
  28. 28.
    M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, Chaos 7, 221 (1997).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Dörfle, Spectrum and eigenfunctions for the Frobenius-Perron operator of the tent map, J. Stat. Phys. 40, 93 (1985).CrossRefGoogle Scholar
  30. 30.
    S. Morita, Bifurcations in globally coupled chaotic maps, Phys. Lett. A 211, 258 (1996).CrossRefGoogle Scholar
  31. 31.
    C. Beck and F. Schlögl, Thermodynamics of chaotic systems (Cambridge University Press, Cambridge, 1995).Google Scholar
  32. 32.
    W. Just, in Collective dynamics of nonlinear and disordered systems, edited by G. Radons, P. Häussler, and W. Just (Springer, Berlin, 2004).Google Scholar
  33. 33.
    K. Falconer, Techniques in fractal geometry (Wiley, Chicester, 1997).Google Scholar
  34. 34.
    A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer, New York, 1994).Google Scholar
  35. 35.
    H. Mori, B. S. So, and T. Ose, Time-correlation functions of one-dimensional transformations, Prog. Theor. Phys. 66, 1266 (1981).Google Scholar
  36. 36.
    T. Bohr and D. Rand, The entropy function for characteristic exponents, Physica D 25, 387 (1987).CrossRefGoogle Scholar
  37. 37.
    G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Trans. Amer. Math. Soc. 252, 351 (1979).Google Scholar
  38. 38.
    R. Bowen, in Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Vol. 470 of Lecture Notes in Mathematics, edited by A. Dold and B. Eckmann (Springer, Berlin, 1975).Google Scholar
  39. 39.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33, 1141 (1986).CrossRefPubMedGoogle Scholar
  40. 40.
    P. Grassberger, R. Badii, and A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors, J. Stat. Phys. 51, 135 (1988).CrossRefGoogle Scholar
  41. 41.
    W. Just and H. Fujisaka, Gibbs Measures and Power Spectra for Type I Intermittent Maps, Physica D 64, 98 (1993).CrossRefGoogle Scholar
  42. 42.
    C. Robinson, Dynamical systems : stability, symbolic dynamics, and chaos (CRC Press, Boca Raton, 1995).Google Scholar
  43. 43.
    R. Artuso, E. Aurell, and P. Cvitanović, Recycling of strange sets, Nonlin. 3, 325 (1990).CrossRefGoogle Scholar
  44. 44.
    D. Ruelle, Thermodynamic formalism (Addison-Wesley, Reading, 1978).Google Scholar
  45. 45.
    W. Just, Equilibrium phase transitions in coupled map lattices: a pedestrian approach,, J. Stat. Phys. 105, 133 (2001).CrossRefGoogle Scholar
  46. 46.
    C. Grebogi, E. Ott, and J. A. Yorke, Crisis sudden changes in chaotic attractors and transient chaos, Physica D 7, 181 (1983).CrossRefGoogle Scholar
  47. 47.
    E. Fick and G. Sauermann, The quantum statistics of dynamic processes (Springer, Berlin, 1990).Google Scholar
  48. 48.
    W. Just, Projection operator approach to the thermodynamic formalism of dynamical systems, J. Stat. Phys. 67, 271 (1992).CrossRefGoogle Scholar
  49. 49.
    R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4, 294 (1963).CrossRefGoogle Scholar
  50. 50.
    K. Kawasaki, in Phase Transitions and Critical Phenomena, edited by C. Domb (Academic Press, London, 1972), p. 443.Google Scholar
  51. 51.
    F. P. Kelly, Reversibility and Stochastic Networks (Wiley, Chichester, 1979).Google Scholar
  52. 52.
    F. Schmüser and W. Just, Non-equilibrium behaviour in unidirectionally coupled map lattices, J. Stat. Phys. 105, 525 (2001).CrossRefGoogle Scholar
  53. 53.
    Nonequilibrium Statistical Mechanics in One Dimension, edited by V. Privman (Cambridge University Press, Cambridge, 1997).Google Scholar

Authors and Affiliations

  • W Just
    • 1
  • F Schmüser
    • 2
  1. 1.MRC, Queen MaryUniversity of LondonLondonUK
  2. 2.IAKSUniversity of KarlsruheKarlsruheGermany

Personalised recommendations