Advertisement

Modeling the Dynamics of Genetic Regulatory Networks: Continuous and Discrete Approaches

  • H de Jong
  • R Lima
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 671)

Abstract

A remarkable development in molecular biology today is the upscaling to the genomic level of its experimental methods. Hardly imaginable only 20 years ago, the sequencing of complete genomes has become a routine job, highly automated and executed in a quasi-industrial environment. The miniaturization of techniques for the hybridization of labeled nucleic acids in solution to DNA molecules attached to a surface has given rise to DNA microarrays, tools for measuring the level of gene expression in a massively parallel way [1]. The development of proteomic methods based on two-dimensional gel electrophoresis, mass spectrometry, and the double-hybrid system allows the identification of proteins and their interactions at a genomic scale [2].

Keywords

Equilibrium Point Phase Portrait Sigma Factor Symbolic Sequence Genetic Regulatory Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Lockhart and E.A. Winzeler, Genomics, gene expression and DNA arrays, Nature 405 no. 6788, 827–836 (2000).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Pandey and M. Mann, Proteomics to study genes and genomes, Nature 405 no. 6788, 837–846 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    R. Alur, C. Belta, F. Ivančíc, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin and J. Schlug, Hybrid modeling and simulation of biomolecular networks, pp. 19–32, in “Hybrid Systems: Computation and Control” (HSCC 2001), M.D. Di Benedetto and A. Sangiovanni-Vincentelli (eds), Lecture Notes in Computer Science 2034, Springer, 2001.Google Scholar
  4. 4.
    R. Ghosh and C.J. Tomlin, Lateral inhibition through Delta-Notch signaling: A piecewise affine hybrid model, pp. 232–246, in “Hybrid Systems: Computation and Control” (HSCC 2001), M.D. Di Benedetto and A. Sangiovanni-Vincentelli (eds), Lecture Notes in Computer Science 2034, Springer, 2001.Google Scholar
  5. 5.
    T. Ideker and T. Galitski and L. Hood, A new approach to decoding life: Systems biology, Annual Review of Genomics and Human Genetics 2, 343–372, 2001.Google Scholar
  6. 6.
    H. Kitano, Systems biology: A brief overview, Science 295, no. 5560, pp. 1662-1664 (2002).CrossRefPubMedGoogle Scholar
  7. 7.
    J.-C. Leloup and A. Goldbeter, A model for the circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins, Journal of Biological Rhythms 13, no. 1, pp. 70–87 (1998).CrossRefPubMedGoogle Scholar
  8. 8.
    H.H. McAdams and L. Shapiro, Circuit simulation of genetic networks, Science 269, no. 5224, pp. 650–656, 1995.PubMedGoogle Scholar
  9. 9.
    B. Lewin, Genes VII, Oxford University Press, Oxford, 1999.Google Scholar
  10. 10.
    B.C. Goodwin, Temporal Organization in Cells, Academic Press, N.Y., 1963.Google Scholar
  11. 11.
    E.P. van Someren, L.F.A. Wessels and M.J.T. Reinders, Linear modeling of genetic networks from experimental data, pp. 355–366, in Proceedings of the Eight International Conference on Intelligent Systems for Molecular Biology, ISMB 2000, R. Altman, T.L. Bailey, P. Bourne, M. Gribskov, T. Lengauer, I.N. Shindyalov, L.F. Ten Eyck and H. Weissig (eds), Menlo Park, CA, AAAI Press, 2000.Google Scholar
  12. 12.
    P. D'Haeseleer, X. Wen, S. Fuhrman and R. Somogyi, Linear modeling of mRNA expression levels during CNS development and injury, pp. 41–52, in “Pacific Symposium on Biocomputing, PSB'99”, vol. 4, R.B. Altman, K. Lauderdale, A.K. Dunker, L. Hunter and T.E. Klein (eds), World Scientific Publishing, Singapore, 1999.Google Scholar
  13. 13.
    H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review, Journal of Computational Biology 9, no. 1, 69–105, 2002.CrossRefGoogle Scholar
  14. 14.
    A. Gilman and A.P. Arkin, Genetic “code ”: Representations and dynamical models of genetic components and networks, Annual Review of Genomics and Human Genetics 3 (2002), 341–369.CrossRefPubMedGoogle Scholar
  15. 15.
    J. Hasty, D. McMillen, F. Isaacs and J.J. Collins, Computational studies of gene regulatory networks: In numero molecular biology, Nature Review Genetics 2, no. 4 (2001), 268–279.CrossRefGoogle Scholar
  16. 16.
    P. Smolen, D.A. Baxter and J.H. Byrne, Modeling transcriptional control in gene networks: Methods, recent results, and future directions, Bulletin of Mathematical Biology 62, no. 2, 247–292, 2000.CrossRefPubMedGoogle Scholar
  17. 17.
    T.M. Gruber and C.A. Gross, Multiple sigma subunits and the partitioning of bacterial transcription space, Annual Review of Microbiology 57 (2003), 441–466.CrossRefPubMedGoogle Scholar
  18. 18.
    A. Ishihama, Functional modulation of Escherichia coli RNA polymerase, Annual Review of Microbiology 54 (2000), 499–518.CrossRefPubMedGoogle Scholar
  19. 19.
    R. Hengge-Aronis, Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase, Microbiology and Molecular Biology Reviews 66, no. 3, pp. 373–395, 2002.CrossRefPubMedGoogle Scholar
  20. 20.
    H. Tagami and H. Aiba, Role of CRP in transcription activation at Escherichia coli lac promoter: CRP is dispensable after the formation of open complex, Nucleic Acids Research 23, no. 4, pp. 599-605, 1995.PubMedGoogle Scholar
  21. 21.
    K.W. Kohn, Molecular interaction maps as information organizers and simulation guides, Chaos 11, no. 1, 1–14 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    F. Repoila, N. Majdalani and S. Gottesman, Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: The RpoS paradigm, Molecular Microbiology 48, no. 4, 855–862 (2003).CrossRefPubMedGoogle Scholar
  23. 23.
    P. Brazhnik, A. de la Fuente and P. Mendes, Gene networks: How to put the function in genomics, Trends in Biotechnology 20, no.11, 467–472 (2002).CrossRefPubMedGoogle Scholar
  24. 24.
    J. Monod and F. Jacob, General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation, pp. 389–401, Cold Spring Harbor Symposium on Quantitative Biology, vol. 26, Cold Spring Harbor, NY, 1961.Google Scholar
  25. 25.
    D. Endy, L. You, J. Yin and I.J. Molineux, Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes, Proceedings of the National Academy of Sciences of the USA 97, no. 10, pp. 5375-5380, 2000.CrossRefGoogle Scholar
  26. 26.
    R. Thomas and R. d'Ari, Biological Feedback, CRC Press, Boca Raton, FL, 1990.Google Scholar
  27. 27.
    T.S. Gardner and C.R. Cantor and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature 403 no. 6767, 339–342 (2000).CrossRefPubMedGoogle Scholar
  28. 28.
    M. Ptashne, A Genetic Switch: Phage λ and Higher Organisms, Cell Press & Blackwell Science, Cambridge, MA, 2nd ed, 1992.Google Scholar
  29. 29.
    G. Yagil and E. Yagil, On the relation between effector concentration and the rate of induced enzyme synthesis, Biophysical Journal 11, no. 1, 11–27, 1971.PubMedGoogle Scholar
  30. 30.
    D. Kaplan and L. Glass, Understanding Nonlinear Dynamics, Springer-Verlag, New York, 1995.Google Scholar
  31. 31.
    J.D. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley, Chichester, 1991.Google Scholar
  32. 32.
    M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J. Doyle and H. Kitano, The ERATO Systems Biology Workbench: Enabling interactions and exchange between software tools for computational biology, pp. 450–461, in Pacific Symposium on Biocomputing, PSB'02, vol. 7, R.B. Altman and A.K. Dunker and L. Hunter and K. Lauderdale and T.E. Klein (eds), World Scientific Publishing, Singapore, 2002.Google Scholar
  33. 33.
    L. Ljung, System Identification: Theory for the User, Prentice Hall, Upper Saddle River, NJ, 2nd ed, 1999.Google Scholar
  34. 34.
    G. von Dassow, E. Meir, E.M. Munro and G.M. Odell, The segment polarity network is a robust developmental module, Nature 406, no. 6792, 188-192, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    N. Barkai and S. Leibler, Robustness in simple biochemical networks, Nature 387:913–917, 1997.CrossRefPubMedGoogle Scholar
  36. 36.
    W.J. Rugh, Linear System Theory, Prentice Hall, Englewood Cliffs, NJ, 2nd ed, 1996.Google Scholar
  37. 37.
    P. D'haeseleer, S. Liang and R. Somogyi, Genetic network inference: From co-expression clustering to reverse engineering, Bioinformatics 16, no. 8, 707–726, 2000.CrossRefPubMedGoogle Scholar
  38. 38.
    T.S. Gardner, D. di Bernardo, D. Lorenz and J.J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling, Science 301, no. 5629, 102–104, 2003.CrossRefPubMedGoogle Scholar
  39. 39.
    M. Ronen, R. Rosenberg, B.I. Shraiman and U. Alon, Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics, Proceedings of the National Academy of Sciences of the USA (2002), 99, no. 16, pp. 10555–10560.CrossRefPubMedGoogle Scholar
  40. 40.
    R. Edwards, H.T. Siegelmann, K. Aziza and L. Glass, Symbolic dynamics and computation in model gene networks, Chaos 11, no. 1, 160–169, 2001.CrossRefPubMedGoogle Scholar
  41. 41.
    L. Glass and S.A. Kauffman, The logical analysis of continuous non-linear biochemical control networks, Journal of Theoretical Biology 39, no. 1, 103–129, 1973.CrossRefPubMedGoogle Scholar
  42. 42.
    T. Mestl, E. Plahte and S.W. Omholt, A mathematical framework for describing and analysing gene regulatory networks, Journal of Theoretical Biology 176, no. 2, 291–300, 1995.CrossRefPubMedGoogle Scholar
  43. 43.
    E.H. Snoussi, Qualitative dynamics of piecewise-linear differential equations: A discrete mapping approach, Dynamics and Stability of Systems 4, no. 3-4, 189–207, 1989.Google Scholar
  44. 44.
    J.-L. Gouzé, T. Sari, A class of piecewise linear differential equations arising in biological models, Dynamical Systems 17, no. 4, 299–316, 2003.Google Scholar
  45. 45.
    H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari and J. Geiselmann, Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology 66, no. 2, 301–340, 2004.CrossRefPubMedGoogle Scholar
  46. 46.
    H. de Jong, J. Geiselmann, G. Batt, C. Hernandez and M. Page, Qualitative simulation of the initiation of sporulation in B. subtilis, Bulletin of Mathematical Biology 66, no. 2, 261–300, 2004.CrossRefPubMedGoogle Scholar
  47. 47.
    H. de Jong, J. Geiselmann, C. Hernandez and M. Page, Genetic Network Analyzer: Qualitative simulation of genetic regulatory networks, Bioinformatics 19, no. 3, 336–344, 2003.CrossRefGoogle Scholar
  48. 48.
    R. Thomas, D. Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks: I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state ”, Bulletin of Mathematical Biology 57, no. 2, 247–276, 1995.CrossRefPubMedGoogle Scholar
  49. 49.
    L. Mendoza, D. Thieffry and E.R. Alvarez-Buylla, Genetic control of flower morphogenesis in Arabidopsis thaliana: A logical analysis, Bioinformatics 15, no. 7-8, 593-606, 1999.CrossRefPubMedGoogle Scholar
  50. 50.
    L. S´nchez and D. Thieffry, A logical analysis of the Drosophila gap genes, Journal of Theoretical Biology 211, no. 2, 115–141, 2001.CrossRefPubMedGoogle Scholar
  51. 51.
    L. S´nchez and D. Thieffry, Segmenting the fly embryo: A logical analysis of the pair-rule cross-regulatory module, Journal of Theoretical Biology 224, no. 4, 517–538, 2003.CrossRefGoogle Scholar
  52. 52.
    D. Thieffry and R. Thomas, Dynamical behaviour of biological networks: II. Immunity control in bacteriophage lambda, Bulletin of Mathematical Biology 57, no. 2, 277–297, 1995.CrossRefPubMedGoogle Scholar
  53. 53.
    H. de Jong, J. Geiselmann and D. Thieffry, Qualitative modeling and simulation of developmental regulatory networks, pp. 109-134, in On Growth, Form, and Computers, S. Kumar and P.J. Bentley (eds), Academic Press, London, 2003.Google Scholar
  54. 54.
    R. Coutinho, Dynâmica simbólica linear, PhD thesis, University of Lisbon (1999).Google Scholar
  55. 55.
    D. Volchenkov and R. Lima, Homogeneous and scalable gene expression regulatory networks with random layouts of switching parameters, submitted (q-bio.MN/0311031) (2004).Google Scholar
  56. 56.
    R. Coutinho and B. Fernandez, Extended symbolic dynamics in bistable CML: Existence and stability of fronts, Physica D 108 (1997) 60–80.CrossRefGoogle Scholar
  57. 57.
    R. Coutinho, B. Fernandez, R. Lima and A. Meyroneinc, Discrete time models for the piecewise affine dynamics of genetic regulatory networks, Preprint Centre de Physique Théorique (2004).Google Scholar
  58. 58.
    A. Meyroneinc, Modéelisation de réseaux de réegulation génétique par un modèle CML, mémoire de DEA, Centre de Physique Théorique (2003).Google Scholar
  59. 58.
    R. Lima and E. Ugalde, Centre de Physique Théorique. In preparation.Google Scholar
  60. 60.
    H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Dover, NY, 1957.Google Scholar
  61. 61.
    H. Bolouri and E.H. Davidson, Modeling transcriptional regulatory networks, BioEssays 24, no. 12, 1118–1129, 2002.CrossRefPubMedGoogle Scholar
  62. 62.
    D. Thieffry and D. Romero, The modularity of biological regulatory networks, BioSystems 50 (1999) 49–59.CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • H de Jong
    • 1
  • R Lima
    • 2
  1. 1.Institut National de Recherche en Informatique et en Automatique (INRIA), Unité de recherche Rhône-AlpesSaint Ismier Cedex
  2. 2.Centre de Physique Théorique, CNRSCedex 09

Personalised recommendations