Advertisement

Spatially Extended Systems with Monotone Dynamics (Continuous Time)

  • C Baesens
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 671)

Abstract

Broadly speaking, monotone dynamics means that some partial order is preserved under the dynamics, that is, if two solutions of some differential equation are ordered at an initial time, they remain in the same order at later times; we also speak of order-preserving dynamics. This monotonicity property makes the dynamics comparatively simple.

Keywords

Partial Order Strict Monotonicity Cooperativity Condition Parabolic PDEs Forward Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Angenent, The periodic points of an area-preserving twist map, Commun. Math. Phys 115, 353–74 (1988).CrossRefGoogle Scholar
  2. 2.
    S. Aubry and P.-Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions, Physica D 8, 381–422 (1983).CrossRefGoogle Scholar
  3. 3.
    S. Aubry and L. de Seze, Dynamics of a charge-density wave in a lattice, in: Festkörperprobleme (Advances in Solid State Physics), XXV, 59–69, P. Grosse (ed), Vieweg, Braunschweig (1985).Google Scholar
  4. 4.
    C. Baesens, Variational Methods in Solid-State Physics, Lecture Notes, University of Warwick (1994).Google Scholar
  5. 5.
    C. Baesens and R.S. MacKay, Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity 11, 949–964 (1998).CrossRefGoogle Scholar
  6. 6.
    C. Baesens and R.S. MacKay, A novel preserved partial order for cooperative networks of units with overdamped second order dynamics, and application to tilted Frenkel-Kontorova chains, Nonlinearity 17, 567–580 (2004).CrossRefGoogle Scholar
  7. 7.
    G.D. Birkhoff, Dynamical Systems, (Providence, RI: American Mathematical Society, 1927).Google Scholar
  8. 8.
    A. Carpio and L.L. Bonilla, Oscillatory wave fronts in chains of coupled nonlinear oscillators, Physical Review E(3) 67 (2003), no. 5, 056621, 11 p.Google Scholar
  9. 9.
    A. Carpio, S.J. Chapman, S. Hastings and J.B. McLeod, Wave solutions in a discrete reaction-diffusion equation, Euro. Jnl Appl. Math. 11, 399–412 (2000).CrossRefGoogle Scholar
  10. 10.
    S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Diff. Eqns 149, 248–291 (1998).CrossRefGoogle Scholar
  11. 11.
    L.M. Floría, J.J. Mazo, Dissipative Dynamics of the Frenkel-Kontorova model, Advances in Physics 45(6), 505–598 (1996).Google Scholar
  12. 12.
    T. Gallay and G. Raugel, Stability of travelling waves for a damped hyperbolic equation, Z Angew M P 48, 451–479 (1997).CrossRefGoogle Scholar
  13. 13.
    C. Golé: Symplectic Twist Maps: Global VariationalTechniques, Advanced Series in Nonlinear Dynamics 18, World Scientific (2001), and references therein.Google Scholar
  14. 14.
    M. Hirsch, Systems of differential equations which are competitive or cooperative 1: Limit sets, SIAM J. Appl. Math. 13 167–179 (1983).Google Scholar
  15. 15.
    M. Hirsch, Systems of differential equations which are competitive or cooperative II: convergence almost everywhere, SIAM J. Math. Anal.16, 423–39 (1985).CrossRefGoogle Scholar
  16. 16.
    M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. reine angew. Math. 383 1–53 (1988).Google Scholar
  17. 17.
    B. Hu, W-X Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova Model with AC-driving, preprint 2004.Google Scholar
  18. 18.
    E. Kamke, Zur Theorie der Systeme Gewoknlicher Differentialgliechungen, II, Acta Math. 58, 57–85 (1932).Google Scholar
  19. 19.
    A. Katok and B. Hasselblatt: Introduction to the Modern Theory of Dynamical Systems, (Cambridge, CUP, 1995).Google Scholar
  20. 20.
    G. Katriel, Existence of travelling waves in discrete sine-Gordon rings, preprint 2004.Google Scholar
  21. 21.
    J.P. La Salle, An invariance principle in the theory of stability, in Int. Symp. on Differential Equations and Dynamical Systems ed J Hale and J P La Salle (London: Academic), p 277 (1967).Google Scholar
  22. 22.
    M. Levi, Nonchaotic behavior in the Josephson Junction, Phys. Rev. A bf 37(3) 927–931 (1988).CrossRefPubMedGoogle Scholar
  23. 23.
    H. Matano, Strongly order-preserving local semi-dynamical systems – Theory and applications, in Res. Notes in Math., 141, Semigroups, Theory and Applications, eds H. Bresis, M.G. Crandall and F. Kappel, eds, vol. 1, (Longman Scientific and Technical, London) pp 178–185 (1986).Google Scholar
  24. 24.
    A.A. Middleton, Asymptotic uniqueness of the sliding state for charge density waves, Phys Rev. Lett. 68, 670–673 (1992).CrossRefPubMedGoogle Scholar
  25. 25.
    M. Müller, Uber das Fundamenthaltheorem in der Theorie der gewohnlichen Differentialgleichungen, Math. Zeit. 26 619–645 (1926).CrossRefGoogle Scholar
  26. 26.
    M.H. Protter and H.F. Weinberger: Maximum Principles in Differential Equations, (Springer-Verlag, New-York, 1984).Google Scholar
  27. 27.
    M. Qian, W Shen and J. Zhang, Global behavior in the dynamical equation of J-J type, J. Diff. Eqns 71(2), 315–333 (1988).CrossRefGoogle Scholar
  28. 28.
    H.L. Smith: Monotone Dynamical Systems, Providence, AMS Mathematical surveys and monographs 41 (1995).Google Scholar

Authors and Affiliations

  • C Baesens
    • 1
  1. 1.Mathematics InstituteUniversity of Warwick.Coventry CV4 7ALUK

Personalised recommendations