Skip to main content

Andreev Billiards

  • Chapter
  • First Online:
Quantum Dots: a Doorway to Nanoscale Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 667))

Abstract

This is a review of recent advances in our understanding of how Andreev reflection at a superconductor modifies the excitation spectrum of a quantum dot. The emphasis is on two-dimensional impurity-free structures in which the classical dynamics is chaotic. Such Andreev billiards differ in a fundamental way from their non-superconducting counterparts. Most notably, the difference between chaotic and integrable classical dynamics shows up already in the level density, instead of only in the level-level correlations. A chaotic billiard has a gap in the spectrum around the Fermi energy, while integrable billiards have a linearly vanishing density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].

    CAS  Google Scholar 

  2. Y. Imry, Introduction to Mesoscopic Physics (Oxford University, Oxford, 2002).

    Google Scholar 

  3. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

    Article  CAS  Google Scholar 

  4. B. J. van Wees and H. Takayanagi, in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, NATO ASI Series E345 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  5. I. Kosztin, D. L. Maslov, and P. M. Goldbart, Phys. Rev. Lett. 75, 1735 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and G. Borghs, Europhys. Lett. 58, 569 (2002).

    Article  CAS  Google Scholar 

  7. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  8. F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2001).

    Google Scholar 

  9. M. L. Mehta, Random Matrices (Academic, New York, 1991).

    Google Scholar 

  10. T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).

    Article  CAS  Google Scholar 

  11. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  12. K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Article  Google Scholar 

  13. C. W. J. Beenakker, in: Transport Phenomena in Mesoscopic Systems, edited by H. Fukuyama and T. Ando (Springer, Berlin, 1992); cond-mat/0406127.

    Google Scholar 

  14. A. A. Golubov, M. Yu. Kupriyanov, and E. Ilichev, Rev. Mod. Phys. 76, 411 (2004).

    Article  CAS  Google Scholar 

  15. W. L. McMillan, Phys. Rev. 175, 537 (1968).

    Article  Google Scholar 

  16. P. G. de Gennes D. Saint-James (1963) Phys. Lett 4 151 Occurrence Handle10.1016/0031-9163(63)90148-3 Occurrence Handle1:CAS:528:DyaF3sXktlaqsLw%3D

    Article  CAS  Google Scholar 

  17. P. G. de Gennes and D. Saint-James, Phys. Lett. 4, 151 (1963); D. Saint-James, J. Physique 25 899 (1964).

    CAS  Google Scholar 

  18. G. Deutscher, cond-mat/0409225.

    Google Scholar 

  19. A. A. Golubov and M. Yu. Kuprianov, J. Low Temp. Phys. 70, 83 (1988).

    Article  Google Scholar 

  20. W. Belzig, C. Bruder, and G. Schön, Phys. Rev. B 54, 9443 (1996).

    Article  CAS  Google Scholar 

  21. S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B 62, 12462 (2000).

    Article  CAS  Google Scholar 

  22. W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin, Superlatt.Microstruct. 25, 1251 (1999).

    Article  CAS  Google Scholar 

  23. J. A. Melsen, P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Europhys. Lett. 35, 7 (1996).

    Article  CAS  Google Scholar 

  24. A. Lodder and Yu. V. Nazarov, Phys. Rev. B 58, 5783 (1998).

    Article  CAS  Google Scholar 

  25. C. W. J. Beenakker (1991) Phys. Rev. Lett. 67 3836 Occurrence Handle10.1103/PhysRevLett.67.3836 Occurrence Handle10044838

    Article  PubMed  Google Scholar 

  26. C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991); 68, 1442(E) (1992).

    Google Scholar 

  27. E. B. Bogomolny, Nonlinearity 5, 805 (1992).

    Article  Google Scholar 

  28. R. E. Prange, Phys. Rev. Lett. 90, 070401 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ph. Jacquod, H. Schomerus, and C. W. J. Beenakker, Phys. Rev. Lett. 90, 207004 (2003).

    Article  PubMed  Google Scholar 

  30. A. Ossipov and T. Kottos, T. Geisel, Europhys. Lett. 62, 719 (2003).

    Article  CAS  Google Scholar 

  31. Y. V. Fyodorov and H.-J. Sommers, JETP Lett. 72, 422 (2000).

    Article  CAS  Google Scholar 

  32. A. Ossipov and T. Kottos, Phys. Rev. Lett. 92, 017004 (2004).

    Article  PubMed  Google Scholar 

  33. F. M. Izrailev, Phys. Rep. 196, 299 (1990).

    Article  MathSciNet  Google Scholar 

  34. J. Tworzydło, A. Tajic, and C.W. J. Beenakker, cond-mat/0405122.

    Google Scholar 

  35. R. Ketzmerick, K. Kruse, and T. Geisel, Physica D 131, 247 (1999).

    Google Scholar 

  36. O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).

    Article  Google Scholar 

  37. S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys. Rev. Lett. 93, 014103 (2004).

    Article  Google Scholar 

  38. M. G. Vavilov, P. W. Brouwer, V. Ambegaokar, and C. W. J. Beenakker, Phys. Rev. Lett. 86, 874 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. P. W. Brouwer and C. W. J. Beenakker, Chaos, Solitons & Fractals 8, 1249 (1997). Several misprints have been corrected in cond-mat/9611162.

    Google Scholar 

  40. K. M. Frahm, P. W. Brouwer, J. A. Melsen, and C. W. J. Beenakker, Phys. Rev. Lett. 76, 2981 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. A. Altland M. R. Zirnbauer (1996) Phys. Rev. Lett. 76 3420 Occurrence Handle10.1103/PhysRevLett.76.3420 Occurrence Handle1:CAS:528:DyaK28XisFOgsLg%3D Occurrence Handle10060962

    Article  CAS  PubMed  Google Scholar 

  42. A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 76, 3420 (1996); Phys. Rev. B 55, 1142 (1997).

    Google Scholar 

  43. M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335 (2003).

    Article  Google Scholar 

  44. A. Pandey, Ann. Phys. (N.Y.) 134, 110 (1981).

    Article  CAS  Google Scholar 

  45. E. Brézin and A. Zee, Phys. Rev. E 49, 2588 (1994).

    Google Scholar 

  46. L. A. Pastur (1972) Teoret. Mat. Fiz. 10 102

    Google Scholar 

  47. L. A. Pastur, Teoret. Mat. Fiz. 10, 102 (1972) [Theoret. Math. Phys. 10, 67 (1972)].

    Google Scholar 

  48. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1995).

    Google Scholar 

  49. J. A. Melsen, P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Physica Scripta T69, 223 (1997).

    CAS  Google Scholar 

  50. A. Pandey and M. L. Mehta, Commun. Math. Phys. 87, 449 (1983).

    Article  Google Scholar 

  51. T. Nagao and K. Slevin, J. Math. Phys. 34, 2075 (1993).

    Article  Google Scholar 

  52. J. T. Bruun, S. N. Evangelou, and C. J. Lambert, J. Phys. Condens. Matt. 7, 4033 (1995).

    Article  CAS  Google Scholar 

  53. K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University, Cambridge, 1997).

    Google Scholar 

  54. S. Gnutzmann, B. Seif, F. von Oppen, and M. R. Zirnbauer, Phys. Rev. E 67, 046225 (2003).

    Google Scholar 

  55. C. W. J. Beenakker, Phys. Rev. B 46, 12841 (1992).

    Google Scholar 

  56. C. A. Tracy H. Widom (1994) Commun. Math. Phys. 159 151

    Google Scholar 

  57. C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994); 177, 727 (1996).

    Google Scholar 

  58. P. M. Ostrovsky M. A. Skvortsov M. V. Feigelman (2001) Phys. Rev. Lett. 87 027002 Occurrence Handle10.1103/PhysRevLett.87.027002

    Article  Google Scholar 

  59. P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigelman, Phys. Rev. Lett. 87, 027002 (2001); JETP Lett. 75, 336 (2002).

    Google Scholar 

  60. A. Lamacraft and B. D. Simons, Phys. Rev. B 64, 014514 (2001).

    Google Scholar 

  61. P. M. Ostrovksy, M. A. Skvortsov, and M. V. Feigelman, Phys. Rev. Lett. 92, 176805 (2004).

    Article  PubMed  Google Scholar 

  62. L. G. Aslamasov A. I. Larkin Yu. N. Ovchinnikov (1968) Zh. Eksp. Teor. 55 323

    Google Scholar 

  63. L. G. Aslamasov, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 323 (1968) [Sov. Phys. JETP 28, 171 (1969)].

    Google Scholar 

  64. A. V. Shytov, P. A. Lee, and L. S. Levitov, Phys. Uspekhi 41, 207 (1998).

    Article  Google Scholar 

  65. J. Wiersig, Phys. Rev. E 65, 036221 (2002).

    Google Scholar 

  66. I. Adagideli and P. M. Goldbart, Phys. Rev. B 65, 201306 (2002).

    Google Scholar 

  67. J. Cserti, P. Polinák, G. Palla, U. Zülicke, and C. J. Lambert, Phys. Rev. B 69, 134514 (2004).

    Google Scholar 

  68. P. G. Silvestrov, M. C. Goorden, C. W. J. Beenakker, Phys. Rev. Lett. 90, 116801 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. P. G. Silvestrov, M. C. Goorden, and C. W. J. Beenakker, Phys. Rev. B 67, 241301 (2003).

    Google Scholar 

  70. K. P. Duncan and B. L. Györffy, Ann. Phys. (N.Y.) 298, 273 (2002).

    Article  CAS  Google Scholar 

  71. J. Cserti, A. Kormányos, Z. Kaufmann, J Koltai, and C. J. Lambert, Phys. Rev. Lett. 89, 057001 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. J. Cserti, A. Bodor, J. Koltai, and G. Vattay, Phys. Rev. B 66, 064528 (2002).

    Google Scholar 

  73. J. Cserti, B. Béri, A. Kormányos, P. Pollner, and Z. Kaufmann, J. Phys. Condens. Matt. 16, 6737 (2004).

    Article  CAS  Google Scholar 

  74. W. Ihra, M. Leadbeater, J. L. Vega, and K. Richter, Europhys. J. B 21, 425 (2001).

    CAS  Google Scholar 

  75. W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213 (1990).

    Article  PubMed  Google Scholar 

  76. H. U. Baranger, R. A. Jalabert, and A. D. Stone, Chaos 3, 665 (1993).

    Article  PubMed  Google Scholar 

  77. A. Kormányos, Z. Kaufmann, J. Cserti, and C. J. Lambert, Phys. Rev. B 67, 172506 (2003).

    Google Scholar 

  78. H. Schomerus and C. W. J. Beenakker, Phys. Rev. Lett. 82, 2951 (1999).

    Article  CAS  Google Scholar 

  79. G. P. Berman and G. M. Zaslavsky, Physica A 91, 450 (1978).

    Google Scholar 

  80. B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Physica D 33, 77 (1988).

    CAS  Google Scholar 

  81. A. I. Larkin Yu. N. Ovchinnikov (1968) Zh. Eksp. Teor. Fiz. 55 2262

    Google Scholar 

  82. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].

    Google Scholar 

  83. M. C. Goorden, Ph. Jacquod, and C. W. J. Beenakker, Phys. Rev. B 68, 220501 (2003).

    Google Scholar 

  84. I. L. Aleiner and A. I. Larkin, Phys. Rev. B 54, 14423 (1996).

    Google Scholar 

  85. I. L. Aleiner and A. I. Larkin, Phys. Rev. E 55, 1243 (1997).

    Google Scholar 

  86. I. Adagideli and C. W. J. Beenakker, Phys. Rev. Lett. 89, 237002 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. W. Ihra and K. Richter, Physica E 9, 362 (2001).

    Google Scholar 

  88. A. Kormányos, Z. Kaufmann, C. J. Lambert, and J. Cserti, Phys. Rev. B 70, 052512 (2004).

    Google Scholar 

  89. B. A. Muzykantskii and D. E. Khmelnitskii, JETP Lett. 62, 76 (1995).

    Google Scholar 

  90. A. V. Andreev, B. D. Simons, O. Agam, and B. L. Altshuler, Nucl. Phys. B 482, 536 (1996).

    Article  CAS  Google Scholar 

  91. D. Taras-Semchuk and A. Altland, Phys. Rev. B 64, 014512 (2001).

    Google Scholar 

  92. A. Altland, B. D. Simons, and M. R. Zirnbauer, Phys. Rep. 359, 283 (2002).

    Article  CAS  Google Scholar 

  93. I. Adagideli, D. E. Sheehy, and P. M. Goldbart, Phys. Rev. B 66, 140512 (2002).

    Google Scholar 

  94. I. Adagideli and Ph. Jacquod, Phys. Rev. B 69, 020503 (2004).

    Google Scholar 

  95. P. W. Brouwer K. M. Frahm C. W. J. Beenakker (1997) Phys. Rev. Lett. 78 4737 Occurrence Handle10.1103/PhysRevLett.78.4737 Occurrence Handle1:CAS:528:DyaK2sXktFCgs7k%3D

    Article  CAS  Google Scholar 

  96. P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Phys. Rev. Lett. 78, 4737 (1997); Waves in Random Media, 9, 91 (1999).

    Google Scholar 

  97. M. G. A. Crawford and P. W. Brouwer, Phys. Rev. E 65, 026221 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Dieter Heiss

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Beenakker, C. Andreev Billiards. In: Dieter Heiss, W. (eds) Quantum Dots: a Doorway to Nanoscale Physics. Lecture Notes in Physics, vol 667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11358817_4

Download citation

Publish with us

Policies and ethics