Advertisement

Andreev Billiards

  • C.W.J. Beenakker
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 667)

Abstract

This is a review of recent advances in our understanding of how Andreev reflection at a superconductor modifies the excitation spectrum of a quantum dot. The emphasis is on two-dimensional impurity-free structures in which the classical dynamics is chaotic. Such Andreev billiards differ in a fundamental way from their non-superconducting counterparts. Most notably, the difference between chaotic and integrable classical dynamics shows up already in the level density, instead of only in the level-level correlations. A chaotic billiard has a gap in the spectrum around the Fermi energy, while integrable billiards have a linearly vanishing density of states.

Keywords

Level Spacing Adiabatic Invariance Adiabatic Quantization Gaussian Unitary Ensemble Chaotic Billiard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].Google Scholar
  2. 2.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford University, Oxford, 2002).Google Scholar
  3. 3.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).CrossRefGoogle Scholar
  4. 4.
    B. J. van Wees and H. Takayanagi, in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, NATO ASI Series E345 (Kluwer, Dordrecht, 1997).Google Scholar
  5. 5.
    I. Kosztin, D. L. Maslov, and P. M. Goldbart, Phys. Rev. Lett. 75, 1735 (1995).CrossRefPubMedGoogle Scholar
  6. 6.
    J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and G. Borghs, Europhys. Lett. 58, 569 (2002).CrossRefGoogle Scholar
  7. 7.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).Google Scholar
  8. 8.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2001).Google Scholar
  9. 9.
    M. L. Mehta, Random Matrices (Academic, New York, 1991).Google Scholar
  10. 10.
    T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).CrossRefGoogle Scholar
  11. 11.
    P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).Google Scholar
  12. 12.
    K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).CrossRefGoogle Scholar
  13. 13.
    C. W. J. Beenakker, in: Transport Phenomena in Mesoscopic Systems, edited by H. Fukuyama and T. Ando (Springer, Berlin, 1992); cond-mat/0406127.Google Scholar
  14. 14.
    A. A. Golubov, M. Yu. Kupriyanov, and E. Ilichev, Rev. Mod. Phys. 76, 411 (2004).CrossRefGoogle Scholar
  15. 15.
    W. L. McMillan, Phys. Rev. 175, 537 (1968).CrossRefGoogle Scholar
  16. 16.
    de Gennes, P. G., Saint-James, D. 1963Phys. Lett4151CrossRefGoogle Scholar
  17. 16.
    P. G. de Gennes and D. Saint-James, Phys. Lett. 4, 151 (1963); D. Saint-James, J. Physique 25 899 (1964).Google Scholar
  18. 17.
    G. Deutscher, cond-mat/0409225.Google Scholar
  19. 18.
    A. A. Golubov and M. Yu. Kuprianov, J. Low Temp. Phys. 70, 83 (1988).CrossRefGoogle Scholar
  20. 19.
    W. Belzig, C. Bruder, and G. Schön, Phys. Rev. B 54, 9443 (1996).CrossRefGoogle Scholar
  21. 20.
    S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B 62, 12462 (2000).CrossRefGoogle Scholar
  22. 21.
    W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin, Superlatt.Microstruct. 25, 1251 (1999).CrossRefGoogle Scholar
  23. 22.
    J. A. Melsen, P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Europhys. Lett. 35, 7 (1996).CrossRefGoogle Scholar
  24. 23.
    A. Lodder and Yu. V. Nazarov, Phys. Rev. B 58, 5783 (1998).CrossRefGoogle Scholar
  25. 24.
    Beenakker, C. W. J. 1991Phys. Rev. Lett.673836CrossRefPubMedGoogle Scholar
  26. 24.
    C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991); 68, 1442(E) (1992).Google Scholar
  27. 25.
    E. B. Bogomolny, Nonlinearity 5, 805 (1992).CrossRefGoogle Scholar
  28. 26.
    R. E. Prange, Phys. Rev. Lett. 90, 070401 (2003).CrossRefPubMedGoogle Scholar
  29. 27.
    Ph. Jacquod, H. Schomerus, and C. W. J. Beenakker, Phys. Rev. Lett. 90, 207004 (2003).CrossRefPubMedGoogle Scholar
  30. 28.
    A. Ossipov and T. Kottos, T. Geisel, Europhys. Lett. 62, 719 (2003).CrossRefGoogle Scholar
  31. 29.
    Y. V. Fyodorov and H.-J. Sommers, JETP Lett. 72, 422 (2000).CrossRefGoogle Scholar
  32. 30.
    A. Ossipov and T. Kottos, Phys. Rev. Lett. 92, 017004 (2004).CrossRefPubMedGoogle Scholar
  33. 31.
    F. M. Izrailev, Phys. Rep. 196, 299 (1990).CrossRefMathSciNetGoogle Scholar
  34. 32.
    J. Tworzydło, A. Tajic, and C.W. J. Beenakker, cond-mat/0405122.Google Scholar
  35. 33.
    R. Ketzmerick, K. Kruse, and T. Geisel, Physica D 131, 247 (1999).Google Scholar
  36. 34.
    O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).CrossRefGoogle Scholar
  37. 35.
    S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys. Rev. Lett. 93, 014103 (2004).CrossRefGoogle Scholar
  38. 36.
    M. G. Vavilov, P. W. Brouwer, V. Ambegaokar, and C. W. J. Beenakker, Phys. Rev. Lett. 86, 874 (2001).CrossRefPubMedGoogle Scholar
  39. 37.
    P. W. Brouwer and C. W. J. Beenakker, Chaos, Solitons & Fractals 8, 1249 (1997). Several misprints have been corrected in cond-mat/9611162.Google Scholar
  40. 38.
    K. M. Frahm, P. W. Brouwer, J. A. Melsen, and C. W. J. Beenakker, Phys. Rev. Lett. 76, 2981 (1996).CrossRefPubMedGoogle Scholar
  41. 39.
    Altland, A., Zirnbauer, M. R. 1996Phys. Rev. Lett.763420CrossRefPubMedGoogle Scholar
  42. 39.
    A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 76, 3420 (1996); Phys. Rev. B 55, 1142 (1997).Google Scholar
  43. 40.
    M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335 (2003).CrossRefGoogle Scholar
  44. 41.
    A. Pandey, Ann. Phys. (N.Y.) 134, 110 (1981).CrossRefGoogle Scholar
  45. 42.
    E. Brézin and A. Zee, Phys. Rev. E 49, 2588 (1994).Google Scholar
  46. 43.
    Pastur, L. A. 1972Teoret. Mat. Fiz.10102Google Scholar
  47. 43.
    L. A. Pastur, Teoret. Mat. Fiz. 10, 102 (1972) [Theoret. Math. Phys. 10, 67 (1972)].Google Scholar
  48. 44.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1995).Google Scholar
  49. 45.
    J. A. Melsen, P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Physica Scripta T69, 223 (1997).Google Scholar
  50. 46.
    A. Pandey and M. L. Mehta, Commun. Math. Phys. 87, 449 (1983).CrossRefGoogle Scholar
  51. 47.
    T. Nagao and K. Slevin, J. Math. Phys. 34, 2075 (1993).CrossRefGoogle Scholar
  52. 48.
    J. T. Bruun, S. N. Evangelou, and C. J. Lambert, J. Phys. Condens. Matt. 7, 4033 (1995).CrossRefGoogle Scholar
  53. 49.
    K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University, Cambridge, 1997).Google Scholar
  54. 50.
    S. Gnutzmann, B. Seif, F. von Oppen, and M. R. Zirnbauer, Phys. Rev. E 67, 046225 (2003).Google Scholar
  55. 51.
    C. W. J. Beenakker, Phys. Rev. B 46, 12841 (1992).Google Scholar
  56. 52.
    Tracy, C. A., Widom, H. 1994Commun. Math. Phys.159151Google Scholar
  57. 52.
    C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994); 177, 727 (1996).Google Scholar
  58. 53.
    Ostrovsky, P. M., Skvortsov, M. A., Feigelman, M. V. 2001Phys. Rev. Lett.87027002CrossRefGoogle Scholar
  59. 53.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigelman, Phys. Rev. Lett. 87, 027002 (2001); JETP Lett. 75, 336 (2002).Google Scholar
  60. 54.
    A. Lamacraft and B. D. Simons, Phys. Rev. B 64, 014514 (2001).Google Scholar
  61. 55.
    P. M. Ostrovksy, M. A. Skvortsov, and M. V. Feigelman, Phys. Rev. Lett. 92, 176805 (2004).CrossRefPubMedGoogle Scholar
  62. 56.
    Aslamasov, L. G., Larkin, A. I., Ovchinnikov, Yu. N. 1968Zh. Eksp. Teor.55323Google Scholar
  63. 56.
    L. G. Aslamasov, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 323 (1968) [Sov. Phys. JETP 28, 171 (1969)].Google Scholar
  64. 57.
    A. V. Shytov, P. A. Lee, and L. S. Levitov, Phys. Uspekhi 41, 207 (1998).CrossRefGoogle Scholar
  65. 58.
    J. Wiersig, Phys. Rev. E 65, 036221 (2002).Google Scholar
  66. 59.
    I. Adagideli and P. M. Goldbart, Phys. Rev. B 65, 201306 (2002).Google Scholar
  67. 60.
    J. Cserti, P. Polinák, G. Palla, U. Zülicke, and C. J. Lambert, Phys. Rev. B 69, 134514 (2004).Google Scholar
  68. 61.
    P. G. Silvestrov, M. C. Goorden, C. W. J. Beenakker, Phys. Rev. Lett. 90, 116801 (2003).CrossRefPubMedGoogle Scholar
  69. 62.
    P. G. Silvestrov, M. C. Goorden, and C. W. J. Beenakker, Phys. Rev. B 67, 241301 (2003).Google Scholar
  70. 63.
    K. P. Duncan and B. L. Györffy, Ann. Phys. (N.Y.) 298, 273 (2002).CrossRefGoogle Scholar
  71. 64.
    J. Cserti, A. Kormányos, Z. Kaufmann, J Koltai, and C. J. Lambert, Phys. Rev. Lett. 89, 057001 (2002).CrossRefPubMedGoogle Scholar
  72. 65.
    J. Cserti, A. Bodor, J. Koltai, and G. Vattay, Phys. Rev. B 66, 064528 (2002).Google Scholar
  73. 66.
    J. Cserti, B. Béri, A. Kormányos, P. Pollner, and Z. Kaufmann, J. Phys. Condens. Matt. 16, 6737 (2004).CrossRefGoogle Scholar
  74. 67.
    W. Ihra, M. Leadbeater, J. L. Vega, and K. Richter, Europhys. J. B 21, 425 (2001).Google Scholar
  75. 68.
    W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213 (1990).CrossRefPubMedGoogle Scholar
  76. 69.
    H. U. Baranger, R. A. Jalabert, and A. D. Stone, Chaos 3, 665 (1993).CrossRefPubMedGoogle Scholar
  77. 70.
    A. Kormányos, Z. Kaufmann, J. Cserti, and C. J. Lambert, Phys. Rev. B 67, 172506 (2003).Google Scholar
  78. 71.
    H. Schomerus and C. W. J. Beenakker, Phys. Rev. Lett. 82, 2951 (1999).CrossRefGoogle Scholar
  79. 72.
    G. P. Berman and G. M. Zaslavsky, Physica A 91, 450 (1978).Google Scholar
  80. 73.
    B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Physica D 33, 77 (1988).Google Scholar
  81. 74.
    Larkin, A. I., Ovchinnikov, Yu. N. 1968Zh. Eksp. Teor. Fiz.552262Google Scholar
  82. 74.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].Google Scholar
  83. 75.
    M. C. Goorden, Ph. Jacquod, and C. W. J. Beenakker, Phys. Rev. B 68, 220501 (2003).Google Scholar
  84. 76.
    I. L. Aleiner and A. I. Larkin, Phys. Rev. B 54, 14423 (1996).Google Scholar
  85. 77.
    I. L. Aleiner and A. I. Larkin, Phys. Rev. E 55, 1243 (1997).Google Scholar
  86. 78.
    I. Adagideli and C. W. J. Beenakker, Phys. Rev. Lett. 89, 237002 (2002).CrossRefPubMedGoogle Scholar
  87. 79.
    W. Ihra and K. Richter, Physica E 9, 362 (2001).Google Scholar
  88. 80.
    A. Kormányos, Z. Kaufmann, C. J. Lambert, and J. Cserti, Phys. Rev. B 70, 052512 (2004).Google Scholar
  89. 81.
    B. A. Muzykantskii and D. E. Khmelnitskii, JETP Lett. 62, 76 (1995).Google Scholar
  90. 82.
    A. V. Andreev, B. D. Simons, O. Agam, and B. L. Altshuler, Nucl. Phys. B 482, 536 (1996).CrossRefGoogle Scholar
  91. 83.
    D. Taras-Semchuk and A. Altland, Phys. Rev. B 64, 014512 (2001).Google Scholar
  92. 84.
    A. Altland, B. D. Simons, and M. R. Zirnbauer, Phys. Rep. 359, 283 (2002).CrossRefGoogle Scholar
  93. 85.
    I. Adagideli, D. E. Sheehy, and P. M. Goldbart, Phys. Rev. B 66, 140512 (2002).Google Scholar
  94. 86.
    I. Adagideli and Ph. Jacquod, Phys. Rev. B 69, 020503 (2004).Google Scholar
  95. 87.
    Brouwer, P. W., Frahm, K. M., Beenakker, C. W. J. 1997Phys. Rev. Lett.784737CrossRefGoogle Scholar
  96. 87.
    P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Phys. Rev. Lett. 78, 4737 (1997); Waves in Random Media, 9, 91 (1999).Google Scholar
  97. 88.
    M. G. A. Crawford and P. W. Brouwer, Phys. Rev. E 65, 026221 (2002).Google Scholar

Authors and Affiliations

  • C.W.J. Beenakker
    • 1
  1. 1.Instituut-LorentzUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations