Skip to main content

Semiconductor Few-Electron Quantum Dots as Spin Qubits

  • Chapter
  • First Online:
Quantum Dots: a Doorway to Nanoscale Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 667))

Abstract

The spin of an electron placed in a magnetic field provides a natural two-level system suitable as a qubit in a quantum computer[1]. In this work, we describe the experimental steps we have taken towards using a single electron spin, trapped in a semiconductor quantum dot, as such a spin qubit [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, (Cambridge University Press, Cambridge, England, 2000).

    Google Scholar 

  2. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57 120 (1998).

    Article  CAS  Google Scholar 

  3. R.P. Feynman, The Feynman Lectures on Physics, Vol. 3 (Addison Wesley, 1970).

    Google Scholar 

  4. M. Riebe et al., Nature 429 734 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. M.D. Barrett et al., Nature 429 737 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. V.B. Braginsky and F.Y. Khalili, Quantum Measurement (Cambridge University Press, 1992).

    Google Scholar 

  7. S. Singh, The Code Book (Anchor Books/Doubleday, 2000).

    Google Scholar 

  8. R.P. Feynman, The Feynman Lectures on Computation, edited by R.W. Allen and T. Hey (Perseus Publishing, 2000).

    Google Scholar 

  9. D. Deutsch, Proc. R. Soc. Lond. A, 400 (1985).

    Google Scholar 

  10. P.W. Shor, in Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE Press, 1994).

    Google Scholar 

  11. S. Lloyd, Science 273 1073 (1996).

    CAS  PubMed  Google Scholar 

  12. L.K. Grover, Phys. Rev. Lett. 79 325 (1997).

    Article  CAS  Google Scholar 

  13. P.W. Shor, in Proceedings of 37th Annual Symposium on Foundations of Computer Science, 56 (IEEE Press, 1996).

    Google Scholar 

  14. A.M. Steane, Phys. Rev. Lett. 77 793 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. A.Y. Kitaev, in Quantum Communication, Computing, and Measurement, edited by A.S. Holevo, O. Hirota and C.M. Caves, 181 (Plenum Press, 1997).

    Google Scholar 

  16. D. Aharonov and M. Ben-Or, quant-ph/9906129 (1999).

    Google Scholar 

  17. D.P. DiVincenzo, Fortschr. Phys. 48 771 (2000).

    Article  Google Scholar 

  18. L.M.K. Vandersypen et al., Nature 414 883 (2001).

    CAS  PubMed  Google Scholar 

  19. Quantum information science and technology roadmapping project, available at http://qist.lanl.gov/.

  20. Y. Kato, R.C. Myers, A.C. Gossard and D.D. Awschalom, Science 299 1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. A.V. Khaetskii and Yu.V. Nazarov, Phys. Rev. B 64 125316 (2001).

    Article  Google Scholar 

  22. V.N. Golovach, A. Khaetskii and D. Loss, Phys. Rev. Lett. 93 016601 (2004)

    Article  Google Scholar 

  23. L.M. Woods, T.L. Reinecke and Y. Lyanda-Geller, Phys. Rev. B 66 161318(R) (2002).

    Google Scholar 

  24. S.I. Erlingsson and Yu.V. Nazarov, Phys. Rev. B 66 155327 (2002).

    Article  Google Scholar 

  25. Y. Nakamura, Yu.A. Pashkin and J.S. Tsai, Nature 398 786 (1999).

    Article  CAS  Google Scholar 

  26. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91 226804 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, NATO Advanced Study Institutes, Ser. E, Vol. 345 (Kluwer Academic, Dordrecht, 1997), pp. 105–214.

    Google Scholar 

  28. N.W. Ashcroft and N.D. Mermin, Solid state physics (Brooks/Cole 1976).

    Google Scholar 

  29. S. Tarucha, D.G. Austing, Y. Tokura, W.G. van der Wiel and L.P. Kouwenhoven, Phys. Rev. Lett. 84 2485 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. W.G. van der Wiel et al., Physica B 256–258, 173 (1998).

    Google Scholar 

  31. D. Weinmann, W. Häusler and B. Kramer, Phys. Rev. Lett. 74 984 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage and L.P. Kouwenhoven, Phys. Rev. Lett. 77 3613 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. V.N. Golovach and D. Loss, Europhys. Lett. 62 83 (2003).

    Article  CAS  Google Scholar 

  34. G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59 2070 (1999).

    Article  CAS  Google Scholar 

  35. J.M. Martinis, M.H. Devoret and J. Clarke, Phys. Rev. B 35 4682 (1987).

    Article  CAS  Google Scholar 

  36. K. Bladh et al., Rev. Sci. Instr. 741323 (2003).

    Article  CAS  Google Scholar 

  37. J.H. Davies, The physics of low-dimensional semiconductors (Cambridge University Press, 1998).

    Google Scholar 

  38. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Estève, and M.H. Devoret, Science 296 886 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. P. M. Petroff, A. Lorke, and A. Imamoglu, Phys. Today, 46 (May 2001).

    Google Scholar 

  40. L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Rep. Prog. Phys. 64 (6), 701 (2001).

    Article  CAS  Google Scholar 

  41. K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Science 297 1313 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. T. Hatano, M. Stopa, T. Yamaguchi, T. Ota, K. Yamada, and S. Tarucha, Phys. Rev. Lett. 3 066806 (2004).

    Article  Google Scholar 

  43. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61 R16315 (2000).

    Article  CAS  Google Scholar 

  44. M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70 1311 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 88 176805 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. H. Pothier, P. Lafarge, C. Urbina, D. Estève, and M.H. Devoret, Europhys. Lett. 17 249 (1992).

    Google Scholar 

  47. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, and L.P. Kouwenhoven, Rev. Mod. Phys. 75 1 (2003), see also cond-mat/0205350v2.

    Article  CAS  Google Scholar 

  48. A.W. Rushforth, C.G. Smith, M.D. Godfrey, H.E. Beere, D.A. Ritchie, and M. Pepper, Phys. Rev. B 69 113309 (2004).

    Article  Google Scholar 

  49. L.M.K. Vandersypen, R. Hanson, L.H. Willems van Beveren, J.M. Elzerman, J.S. Greidanus, S. De Franceschi, and L.P. Kouwenhoven, in Quantum Computing and Quantum Bits in Mesoscopic Systems, Kluwer Academic/Plenum Publishers, New York 2003), see also quant-ph/0207059.

    Google Scholar 

  50. A. Aassime, G. Johansson, G. Wendin, R.J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86 3376 (2001).

    Article  Google Scholar 

  51. P. Lafarge, H. Pothier, E.R. Williams, D. Esteve, C. Urbina, and M.H. Devoret, Zeitschrift für Physik B, 85 327 (1991).

    Article  Google Scholar 

  52. R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 68 3088 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. K.W. Lehnert, K. Bladh, L.F. Spietz, D. Gunnarsson, D.I. Schuster, P. Delsing, and R.J. Schoelkopf, Phys. Rev. Lett. 90 027002 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. R. Hanson, B. Witkamp, L.M.K. Vandersypen, L.H. Willems van Beveren, J.M. Elzerman, and L.P. Kouwenhoven, Phys. Rev. Lett. 91 196802 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. J.M. Elzerman, R. Hanson, J.S. Greidanus, L.H. Willems van Beveren, S. De Franceschi, L.M.K. Vandersypen, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. B 67 R161308 (2003).

    Article  Google Scholar 

  56. T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59 109 (1987).

    Article  PubMed  Google Scholar 

  57. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, and D.E. Prober, Science 280 1238 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. W. Lu, Z. Ji, L. Pfeiffer, K.W. West, and A.J. Rimberg, Nature 423 422 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. T. Fujisawa, T. Hayashi, Y. Hirayama, H.D Cheong, and Y.H. Jeong, Appl. Phys. Lett. 84 2343 (2004).

    Article  CAS  Google Scholar 

  60. J. Cooper, C.G. Smith, D.A. Ritchie, E.H. Linfield, Y. Jin, and H. Launois, Phys. E 6 457 (2000).

    CAS  Google Scholar 

  61. R. Schleser, E. Ruh, T. Ihn, K. Ennslin, D.C. Driscoll, and A.C. Gossard, cond-mat/0406568.

    Google Scholar 

  62. P. Horowitz and W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, UK, 1989).

    Google Scholar 

  63. A.N. Korotkov, Phys. Rev. B 60 5737 (1999)

    Article  CAS  Google Scholar 

  64. A.A. Clerk, S.M. Girvin and A.D. Stone, Phys. Rev. B 67 165324 (2003).

    Article  Google Scholar 

  65. J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley (Reading MA, USA, 1994).

    Google Scholar 

  66. F.W. Wehrli, Physics Today 6 34 (1992).

    Google Scholar 

  67. S.A. Wolf et al., Science 294 1488–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. R. Blatt and P. Zoller, Eur. J. Phys. 9 250–279 (1988).

    Article  CAS  Google Scholar 

  69. H.J. Mamin, R. Budakian, B.W. Chui, and D. Rugar, Phys. Rev. Lett. 91 207604 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. B.E. Kane, Nature 393 133–137 (1998).

    Article  CAS  Google Scholar 

  71. M. Xiao, I. Martin, and H.W. Jiang, Phys. Rev. Lett. 91 078301 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. M. Friesen, C. Tahan, R. Joynt, and M.A. Eriksson, Phys. Rev. Lett. 92 037901 (2004).

    Article  PubMed  Google Scholar 

  73. H.A. Engel, V.N. Golovach, D. Loss, L.M.K. Vandersypen, J.M. Elzerman, R. Hanson, and L.P. Kouwenhoven, Phys. Rev. Lett. 93 106804 (2004).

    Article  PubMed  Google Scholar 

  74. R. Ionicioiu and A.E. Popescu, http://xxx.lanl.gov/abs/quant-ph/0310047 (2003).

  75. A.D. Greentree, A.R. Hamilton, L.C.L. Hollenberg, and R.G. Clark, http://xxx.lanl.gov/abs/cond-mat/0403449 (2004).

  76. J. Weis, R.J. Haug, K. von Klitzing, and K. Ploog, Surf. Sci. 305 664 (1994).

    Article  CAS  Google Scholar 

  77. L.P. Kouwenhoven et al., Science 278 1788 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. M. Ciorga et al., Physica E 11 35 (2001).

    CAS  Google Scholar 

  79. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature 419 278–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. J.A. Folk, R.M. Potok, C.M. Marcus, and V. Umansky, Science 299 679 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, L.M.K. Vandersypen, and L.P. Kouwenhoven, Appl. Phys. Lett. 84 4617–4619 (2004).

    Article  CAS  Google Scholar 

  82. R. Hanson et al., http://xxx.lanl.gov/abs/cond-mat/011414 (2003)

  83. A.V. Khaetskii and Yu.V. Nazarov, Phys. Rev. B 64 125316 (2001).

    Article  Google Scholar 

  84. L.M. Woods, T.L. Reinecke, and Y. Lyanda-Geller, Phys. Rev. B 66 161318(R) (2002).

    Google Scholar 

  85. S.I. Erlingsson and Yu.V. Nazarov, Phys. Rev. B 66 155327 (2002).

    Article  Google Scholar 

  86. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, and A.C. Gossard, cond-mat/0408139 (2004).

    Google Scholar 

  87. S.W. Jung, T. Fujisawa, Y.H. Jeong and Y. Hirayama, cond-mat (2004).

    Google Scholar 

  88. T. Englert, D.C. Tsui, A.C. Gossard, and C. Uihlein. Surface Science 113 295 (1982).

    Article  CAS  Google Scholar 

  89. J.M. Kikkawa and D.D. Awschalom, Nature 397 139 (1999).

    Article  CAS  Google Scholar 

  90. M. Xiao, I. Martin, E. Yablonovitch, and H.W. Jiang, Nature 430 435 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. J.D. Jackson, Classical electrodynamics, Wiley, New York (1998).

    Google Scholar 

  92. H.A. Engel and D. Loss, Phys. Rev. Lett. 86 4648 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. I. Martin, D. Mozyrsky, and H.W. Jiang, Phys. Rev. Lett. textbf{90}, 018301 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59 2070 (1999).

    Article  CAS  Google Scholar 

  95. M. Dobers, K. von Klitzing, and G. Weiman. Phys. Rev. B 38 5453 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Dieter Heiss

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Elzerman, J., Hanson, R., van Beveren, L., Tarucha, S., Vandersypen, L., Kouwenhoven, L. Semiconductor Few-Electron Quantum Dots as Spin Qubits. In: Dieter Heiss, W. (eds) Quantum Dots: a Doorway to Nanoscale Physics. Lecture Notes in Physics, vol 667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11358817_2

Download citation

Publish with us

Policies and ethics