Advertisement

Semiconductor Few-Electron Quantum Dots as Spin Qubits

  • J.M. Elzerman
  • R. Hanson
  • L.H.W. van Beveren
  • S. Tarucha
  • L.M.K. Vandersypen
  • L.P. Kouwenhoven
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 667)

Abstract

The spin of an electron placed in a magnetic field provides a natural two-level system suitable as a qubit in a quantum computer[1]. In this work, we describe the experimental steps we have taken towards using a single electron spin, trapped in a semiconductor quantum dot, as such a spin qubit [2].

Keywords

Gate Voltage Zeeman Splitting Tunnel Barrier Tunnel Rate Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, (Cambridge University Press, Cambridge, England, 2000).Google Scholar
  2. 2.
    D. Loss and D.P. DiVincenzo, Phys. Rev. A 57 120 (1998).CrossRefGoogle Scholar
  3. 3.
    R.P. Feynman, The Feynman Lectures on Physics, Vol. 3 (Addison Wesley, 1970).Google Scholar
  4. 4.
    M. Riebe et al., Nature 429 734 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    M.D. Barrett et al., Nature 429 737 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    V.B. Braginsky and F.Y. Khalili, Quantum Measurement (Cambridge University Press, 1992).Google Scholar
  7. 7.
    S. Singh, The Code Book (Anchor Books/Doubleday, 2000).Google Scholar
  8. 8.
    R.P. Feynman, The Feynman Lectures on Computation, edited by R.W. Allen and T. Hey (Perseus Publishing, 2000).Google Scholar
  9. 9.
    D. Deutsch, Proc. R. Soc. Lond. A, 400 (1985).Google Scholar
  10. 10.
    P.W. Shor, in Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE Press, 1994).Google Scholar
  11. 11.
    S. Lloyd, Science 273 1073 (1996).PubMedGoogle Scholar
  12. 12.
    L.K. Grover, Phys. Rev. Lett. 79 325 (1997).CrossRefGoogle Scholar
  13. 13.
    P.W. Shor, in Proceedings of 37th Annual Symposium on Foundations of Computer Science, 56 (IEEE Press, 1996).Google Scholar
  14. 14.
    A.M. Steane, Phys. Rev. Lett. 77 793 (1996).CrossRefPubMedGoogle Scholar
  15. 15.
    A.Y. Kitaev, in Quantum Communication, Computing, and Measurement, edited by A.S. Holevo, O. Hirota and C.M. Caves, 181 (Plenum Press, 1997).Google Scholar
  16. 16.
    D. Aharonov and M. Ben-Or, quant-ph/9906129 (1999).Google Scholar
  17. 17.
    D.P. DiVincenzo, Fortschr. Phys. 48 771 (2000).CrossRefGoogle Scholar
  18. 18.
    L.M.K. Vandersypen et al., Nature 414 883 (2001).PubMedGoogle Scholar
  19. 19.
    Quantum information science and technology roadmapping project, available at http://qist.lanl.gov/.
  20. 20.
    Y. Kato, R.C. Myers, A.C. Gossard and D.D. Awschalom, Science 299 1201 (2003).CrossRefPubMedGoogle Scholar
  21. 21.
    A.V. Khaetskii and Yu.V. Nazarov, Phys. Rev. B 64 125316 (2001).CrossRefGoogle Scholar
  22. 22.
    V.N. Golovach, A. Khaetskii and D. Loss, Phys. Rev. Lett. 93 016601 (2004)CrossRefGoogle Scholar
  23. 23.
    L.M. Woods, T.L. Reinecke and Y. Lyanda-Geller, Phys. Rev. B 66 161318(R) (2002).Google Scholar
  24. 24.
    S.I. Erlingsson and Yu.V. Nazarov, Phys. Rev. B 66 155327 (2002).CrossRefGoogle Scholar
  25. 25.
    Y. Nakamura, Yu.A. Pashkin and J.S. Tsai, Nature 398 786 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91 226804 (2003).CrossRefPubMedGoogle Scholar
  27. 27.
    L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, in Mesoscopic Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, NATO Advanced Study Institutes, Ser. E, Vol. 345 (Kluwer Academic, Dordrecht, 1997), pp. 105–214.Google Scholar
  28. 28.
    N.W. Ashcroft and N.D. Mermin, Solid state physics (Brooks/Cole 1976).Google Scholar
  29. 29.
    S. Tarucha, D.G. Austing, Y. Tokura, W.G. van der Wiel and L.P. Kouwenhoven, Phys. Rev. Lett. 84 2485 (2000).CrossRefPubMedGoogle Scholar
  30. 30.
    W.G. van der Wiel et al., Physica B 256–258, 173 (1998).Google Scholar
  31. 31.
    D. Weinmann, W. Häusler and B. Kramer, Phys. Rev. Lett. 74 984 (1995).CrossRefPubMedGoogle Scholar
  32. 32.
    S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage and L.P. Kouwenhoven, Phys. Rev. Lett. 77 3613 (1996).CrossRefPubMedGoogle Scholar
  33. 33.
    V.N. Golovach and D. Loss, Europhys. Lett. 62 83 (2003).CrossRefGoogle Scholar
  34. 34.
    G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59 2070 (1999).CrossRefGoogle Scholar
  35. 35.
    J.M. Martinis, M.H. Devoret and J. Clarke, Phys. Rev. B 35 4682 (1987).CrossRefGoogle Scholar
  36. 36.
    K. Bladh et al., Rev. Sci. Instr. 741323 (2003).CrossRefGoogle Scholar
  37. 37.
    J.H. Davies, The physics of low-dimensional semiconductors (Cambridge University Press, 1998).Google Scholar
  38. 38.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Estève, and M.H. Devoret, Science 296 886 (2002).CrossRefPubMedGoogle Scholar
  39. 39.
    P. M. Petroff, A. Lorke, and A. Imamoglu, Phys. Today, 46 (May 2001).Google Scholar
  40. 40.
    L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Rep. Prog. Phys. 64 (6), 701 (2001).CrossRefGoogle Scholar
  41. 41.
    K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Science 297 1313 (2002).CrossRefPubMedGoogle Scholar
  42. 42.
    T. Hatano, M. Stopa, T. Yamaguchi, T. Ota, K. Yamada, and S. Tarucha, Phys. Rev. Lett. 3 066806 (2004).CrossRefGoogle Scholar
  43. 43.
    M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61 R16315 (2000).CrossRefGoogle Scholar
  44. 44.
    M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70 1311 (1993).CrossRefPubMedGoogle Scholar
  45. 45.
    D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 88 176805 (2002).CrossRefPubMedGoogle Scholar
  46. 46.
    H. Pothier, P. Lafarge, C. Urbina, D. Estève, and M.H. Devoret, Europhys. Lett. 17 249 (1992).Google Scholar
  47. 47.
    W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, and L.P. Kouwenhoven, Rev. Mod. Phys. 75 1 (2003), see also cond-mat/0205350v2.CrossRefGoogle Scholar
  48. 48.
    A.W. Rushforth, C.G. Smith, M.D. Godfrey, H.E. Beere, D.A. Ritchie, and M. Pepper, Phys. Rev. B 69 113309 (2004).CrossRefGoogle Scholar
  49. 49.
    L.M.K. Vandersypen, R. Hanson, L.H. Willems van Beveren, J.M. Elzerman, J.S. Greidanus, S. De Franceschi, and L.P. Kouwenhoven, in Quantum Computing and Quantum Bits in Mesoscopic Systems, Kluwer Academic/Plenum Publishers, New York 2003), see also quant-ph/0207059.Google Scholar
  50. 50.
    A. Aassime, G. Johansson, G. Wendin, R.J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86 3376 (2001).CrossRefGoogle Scholar
  51. 51.
    P. Lafarge, H. Pothier, E.R. Williams, D. Esteve, C. Urbina, and M.H. Devoret, Zeitschrift für Physik B, 85 327 (1991).CrossRefGoogle Scholar
  52. 52.
    R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 68 3088 (1992).CrossRefPubMedGoogle Scholar
  53. 53.
    K.W. Lehnert, K. Bladh, L.F. Spietz, D. Gunnarsson, D.I. Schuster, P. Delsing, and R.J. Schoelkopf, Phys. Rev. Lett. 90 027002 (2003).CrossRefPubMedGoogle Scholar
  54. 54.
    R. Hanson, B. Witkamp, L.M.K. Vandersypen, L.H. Willems van Beveren, J.M. Elzerman, and L.P. Kouwenhoven, Phys. Rev. Lett. 91 196802 (2003).CrossRefPubMedGoogle Scholar
  55. 55.
    J.M. Elzerman, R. Hanson, J.S. Greidanus, L.H. Willems van Beveren, S. De Franceschi, L.M.K. Vandersypen, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. B 67 R161308 (2003).CrossRefGoogle Scholar
  56. 56.
    T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59 109 (1987).CrossRefPubMedGoogle Scholar
  57. 57.
    R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, and D.E. Prober, Science 280 1238 (1998).CrossRefPubMedGoogle Scholar
  58. 58.
    W. Lu, Z. Ji, L. Pfeiffer, K.W. West, and A.J. Rimberg, Nature 423 422 (2003).CrossRefPubMedGoogle Scholar
  59. 59.
    T. Fujisawa, T. Hayashi, Y. Hirayama, H.D Cheong, and Y.H. Jeong, Appl. Phys. Lett. 84 2343 (2004).CrossRefGoogle Scholar
  60. 60.
    J. Cooper, C.G. Smith, D.A. Ritchie, E.H. Linfield, Y. Jin, and H. Launois, Phys. E 6 457 (2000).Google Scholar
  61. 61.
    R. Schleser, E. Ruh, T. Ihn, K. Ennslin, D.C. Driscoll, and A.C. Gossard, cond-mat/0406568.Google Scholar
  62. 62.
    P. Horowitz and W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, UK, 1989).Google Scholar
  63. 63.
    A.N. Korotkov, Phys. Rev. B 60 5737 (1999)CrossRefGoogle Scholar
  64. 64.
    A.A. Clerk, S.M. Girvin and A.D. Stone, Phys. Rev. B 67 165324 (2003).CrossRefGoogle Scholar
  65. 65.
    J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley (Reading MA, USA, 1994).Google Scholar
  66. 66.
    F.W. Wehrli, Physics Today 6 34 (1992).Google Scholar
  67. 67.
    S.A. Wolf et al., Science 294 1488–1495 (2001).CrossRefPubMedGoogle Scholar
  68. 68.
    R. Blatt and P. Zoller, Eur. J. Phys. 9 250–279 (1988).CrossRefGoogle Scholar
  69. 69.
    H.J. Mamin, R. Budakian, B.W. Chui, and D. Rugar, Phys. Rev. Lett. 91 207604 (2003).CrossRefPubMedGoogle Scholar
  70. 70.
    B.E. Kane, Nature 393 133–137 (1998).CrossRefGoogle Scholar
  71. 71.
    M. Xiao, I. Martin, and H.W. Jiang, Phys. Rev. Lett. 91 078301 (2003).CrossRefPubMedGoogle Scholar
  72. 72.
    M. Friesen, C. Tahan, R. Joynt, and M.A. Eriksson, Phys. Rev. Lett. 92 037901 (2004).CrossRefPubMedGoogle Scholar
  73. 73.
    H.A. Engel, V.N. Golovach, D. Loss, L.M.K. Vandersypen, J.M. Elzerman, R. Hanson, and L.P. Kouwenhoven, Phys. Rev. Lett. 93 106804 (2004).CrossRefPubMedGoogle Scholar
  74. 74.
    R. Ionicioiu and A.E. Popescu, http://xxx.lanl.gov/abs/quant-ph/0310047 (2003).
  75. 75.
    A.D. Greentree, A.R. Hamilton, L.C.L. Hollenberg, and R.G. Clark, http://xxx.lanl.gov/abs/cond-mat/0403449 (2004).
  76. 76.
    J. Weis, R.J. Haug, K. von Klitzing, and K. Ploog, Surf. Sci. 305 664 (1994).CrossRefGoogle Scholar
  77. 77.
    L.P. Kouwenhoven et al., Science 278 1788 (1997).CrossRefPubMedGoogle Scholar
  78. 78.
    M. Ciorga et al., Physica E 11 35 (2001).Google Scholar
  79. 79.
    T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature 419 278–281 (2002).CrossRefPubMedGoogle Scholar
  80. 80.
    J.A. Folk, R.M. Potok, C.M. Marcus, and V. Umansky, Science 299 679 (2003).CrossRefPubMedGoogle Scholar
  81. 81.
    J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, L.M.K. Vandersypen, and L.P. Kouwenhoven, Appl. Phys. Lett. 84 4617–4619 (2004).CrossRefGoogle Scholar
  82. 82.
  83. 83.
    A.V. Khaetskii and Yu.V. Nazarov, Phys. Rev. B 64 125316 (2001).CrossRefGoogle Scholar
  84. 84.
    L.M. Woods, T.L. Reinecke, and Y. Lyanda-Geller, Phys. Rev. B 66 161318(R) (2002).Google Scholar
  85. 85.
    S.I. Erlingsson and Yu.V. Nazarov, Phys. Rev. B 66 155327 (2002).CrossRefGoogle Scholar
  86. 86.
    J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, and A.C. Gossard, cond-mat/0408139 (2004).Google Scholar
  87. 87.
    S.W. Jung, T. Fujisawa, Y.H. Jeong and Y. Hirayama, cond-mat (2004).Google Scholar
  88. 88.
    T. Englert, D.C. Tsui, A.C. Gossard, and C. Uihlein. Surface Science 113 295 (1982).CrossRefGoogle Scholar
  89. 89.
    J.M. Kikkawa and D.D. Awschalom, Nature 397 139 (1999).CrossRefGoogle Scholar
  90. 90.
    M. Xiao, I. Martin, E. Yablonovitch, and H.W. Jiang, Nature 430 435 (2004).CrossRefPubMedGoogle Scholar
  91. 91.
    J.D. Jackson, Classical electrodynamics, Wiley, New York (1998).Google Scholar
  92. 92.
    H.A. Engel and D. Loss, Phys. Rev. Lett. 86 4648 (2001).CrossRefPubMedGoogle Scholar
  93. 93.
    I. Martin, D. Mozyrsky, and H.W. Jiang, Phys. Rev. Lett. textbf{90}, 018301 (2003).CrossRefPubMedGoogle Scholar
  94. 94.
    G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59 2070 (1999).CrossRefGoogle Scholar
  95. 95.
    M. Dobers, K. von Klitzing, and G. Weiman. Phys. Rev. B 38 5453 (1988).CrossRefGoogle Scholar

Authors and Affiliations

  • J.M. Elzerman
    • 1
    • 2
  • R. Hanson
    • 1
  • L.H.W. van Beveren
    • 1
    • 2
  • S. Tarucha
    • 2
    • 3
  • L.M.K. Vandersypen
    • 1
  • L.P. Kouwenhoven
    • 1
    • 2
  1. 1.Kavli Institute of Nanoscience DelftDelftThe Netherlands
  2. 2.ERATO Mesoscopic Correlation ProjectUniversity of Tokyo, Bunkyo-kuTokyoJapan
  3. 3.NTT Basic Research Laboratories, Atsugi-shiKanagawaJapan

Personalised recommendations