Skip to main content

Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups

  • Chapter
  • First Online:
Quantum Field Theory and Noncommutative Geometry

Part of the book series: Lecture Notes in Physics ((LNP,volume 662))

Abstract

We apply methods from strict quantization of solvable symmetric spaces to obtain universal deformation formulae for actions of every three-dimensional solvable Lie group. We also study compatible co-products by generalizing the notion of smash product in the context of Hopf algebras. We investigate in particular the dressing action of the ‘book’ group on SU(2). This work is aimed to be applied in a string theoretical context to produce noncommutative deformations of D-branes within a non-formal operator algebraic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eiichi Abe. Hopf algebras. Cambridge Tracts in Mathematics, 74. Cambridge University Press, 1980.

    Google Scholar 

  2. V. Schomerus, Lectures on branes in curved backgrounds, hep-th/0209241; A.Y. Alekseev, A. Recknagel, V. Schomerus, hep-th/0104054.

    Google Scholar 

  3. C. Bachas, M. Petropoulos, JHEP 0102 (2001) 025, hep-th/0012234.

    Google Scholar 

  4. François Bayen Moshé Flato Christian Fronsdal André Lichnerowicz Daniel Sternheimer (1978) ArticleTitleDeformation theory and quantization I. Deformations of symplectic structures Ann. Physics 111 IssueID1 61–110 Occurrence Handle10.1016/0003-4916(78)90224-5

    Article  Google Scholar 

  5. François Bayen, Moshé Flato, Christian Fronsdal, André Lichnerowicz and Daniel Sternheimer. Deformation theory and quantization I. Deformations of symplectic structures. Ann. Physics 111 (1978), no. 1, 61–110. Deformation theory and quantization II. Physical applications. Ann. Physics 111 (1978), no. 1, 111–151.

    Article  CAS  Google Scholar 

  6. Pierre Bieliavsky. Espaces symétriques symplectiques. Ph. D. thesis, Université Libre de Bruxelles, 1995.

    Google Scholar 

  7. Pierre Bieliavsky. Four-dimensional simply connected symplectic symmetric spaces. Geom. Dedicata 69 (1998), no. 3, 291–316.

    Article  Google Scholar 

  8. Pierre Bieliavsky. Strict quantization of solvable symmetric spaces. J. Sympl. Geom. 1 (2002), no. 2, 269–320.

    Google Scholar 

  9. Pierre Bieliavsky and Yoshiaki Maeda. Convergent star product algebras on “ax+b”. Lett. Math. Phys. 62 (2002), no. 3, 233–243.

    Article  Google Scholar 

  10. Pierre Bieliavsky and Marc Massar. Oscillatory integral formulae for left-invariant star products on a class of Lie groups. Lett. Math. Phys. 58 (2001), no. 2, 115–128.

    Article  Google Scholar 

  11. Alain Connes and Giovanni Landi. Noncommutative manifolds, the instanton algebra and isospectral deformations. Comm. Math. Phys. 221 (2001), no. 1, 141–159.

    Google Scholar 

  12. Bernhard Drabant, Alfons Van Daele and Yinhuo Zhang. Actions of multiplier Hopf algebras. Commun. Algebra 27 (1999), no. 9, 4117–4172, .

    Google Scholar 

  13. Anthony Giaquinto and James J. Zhang. Bialgebra actions, twists, and universal deformation formulas. J. Pure Appl. Algebra 128 (1998), no. 2, 133–151.

    Article  Google Scholar 

  14. Simone Gutt. An explicit *-product on the cotangent bundle of a Lie group. Lett. Math. Phys. 7 (1983), no. 3, 249–258.

    Article  Google Scholar 

  15. Mikhail Karasev. Formulas for non-commutative products of functions in terms of membranes and strings I. Russian J. Math. Phys. 2 (1994), no. 4, 445–462.

    Google Scholar 

  16. André Lichnerowicz and Alberto Medina. On Lie groups with left-invariant symplectic or Kählerian structures. Lett. Math. Phys. 16 (1988), no. 3, 225–235.

    Article  CAS  Google Scholar 

  17. Jiang-Hua Lu and Tudor Ratiu; On the nonlinear convexity result of Kostant. J. of the A.M.S. 4 (1991), no. 2, 349–363.

    Google Scholar 

  18. Jiang-Hua Lu and Alan Weinstein. Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom. 31 (1990), no. 2, 501–526.

    Google Scholar 

  19. Shahn Majid. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), no. 1, 17–64.

    Article  Google Scholar 

  20. Saunders Mac Lane. Homology. Springer-Verlag, 1975.

    Google Scholar 

  21. John W. Milnor and John C. Moore. On the structure of Hopf algebras. Ann. Math. 81 (1965), no. 2, 211–264.

    Google Scholar 

  22. Richard K. Molnar. Semi-direct products of Hopf algebras. J. Algebra 47 (1977), 29–51.

    Article  Google Scholar 

  23. Gert K. Pedersen. C*-algebras and their automorphism groups. London Mathematical Society Monographs, 14. Academic Press, 1979.

    Google Scholar 

  24. Markus J. Pflaum. Deformation quantization on cotangent bundles. Rep. Math. Phys. 43 (1999) no. 1–2, 291–297.

    Article  Google Scholar 

  25. Marc A. Rieffel. Deformation Quantization of Heisenberg Manifolds. Commum. Math. Phys. 122 (1989), 531–562.

    Article  Google Scholar 

  26. Marc A. Rieffel, Deformation quantization for actions of Rd. Mem. Amer. Math. Soc. 106 (1993), no. 506.

    Google Scholar 

  27. N. Seiberg, E. Witten, JHEP 9909:032, 1999, hep-th/9908142

    Google Scholar 

  28. Pierre Sleewaegen. Application moment et théorème de convexité de Kostant. Ph.D. thesis, Brussels ULB, 1998.

    Google Scholar 

  29. Moss E. Sweedler. Cohomology of algebras over Hopf algebras. Trans. Amer. Math. Soc. 133 (1968), 205–239.

    Google Scholar 

  30. Moss E. Sweedler. Hopf algebras. W.A. Benjamin, 1969.

    Google Scholar 

  31. Alan Weinstein. Traces and triangles in symmetric symplectic spaces. Symplectic geometry and quantization (Sanda and Yokohama, 1993), Contemp. Math. 179 (1994), 261–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ursula Carow-Watamura Yoshiaki Maeda Satoshi Watamura

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bieliavsky, P., Bonneau, P., Maeda, Y. Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups. In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics, vol 662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11342786_7

Download citation

Publish with us

Policies and ethics