Skip to main content

Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 175

Abstract

The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C et al (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One 3:e3116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmaditabar P, Momtazi-Borojeni AA, Rezayan AH, Mahmoodi M, Sahebkar A, Mellat M (2017) Enhanced entrapment and improved in vitro controlled release of N-acetyl cysteine in hybrid PLGA/lecithin nanoparticles prepared using a nanoprecipitation/self-assembly method. J Cell Biochem 118(12):4203–4209

    Article  CAS  PubMed  Google Scholar 

  • Alving CR, Beck Z, Matyas GR, Rao M (2016) Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv 13:807–816

    PubMed  CAS  Google Scholar 

  • Andersen P (2007) Vaccine strategies against latent tuberculosis infection. Trends Microbiol 15:7–13

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Kaufmann SH (2014) Novel vaccination strategies against tuberculosis. Cold Spring Harb Perspect Med 4:a018523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badell E, Nicolle F, Clark S, Majlessi L, Boudou F, Martino A et al (2009) Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B-ESAT-6 does not correlate with circulating IFN-γ producing T-cells. Vaccine 27:28–37

    Article  CAS  PubMed  Google Scholar 

  • Badiee A, Khamesipour A, Samiei A, Soroush D, Shargh VH, Kheiri MT et al (2012) The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Exp Parasitol 132:403–409

    Article  CAS  PubMed  Google Scholar 

  • Baghani AA, Soleimanpour S, Farsiani H, Mosavat A, Yousefi M, Meshkat Z et al (2017) CFP10: mFcγ2 as a novel tuberculosis vaccine candidate increases immune response in mouse. Iran J Basic Med Sci 20:122

    PubMed  PubMed Central  Google Scholar 

  • Bottai D, Frigui W, Clark S, Rayner E, Zelmer A, Andreu N et al (2015) Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine 33:2710–2718

    Article  CAS  PubMed  Google Scholar 

  • Brito LA, O’Hagan DT (2014) Designing and building the next generation of improved vaccine adjuvants. J Control Release 190:563–579

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Hu X, Yu D, Li S, Tian X, Zhu Y (2005) Combined DNA vaccine encapsulated in microspheres enhanced protection efficacy against Mycobacterium tuberculosis infection of mice. Vaccine 23:4167–4174

    Article  CAS  PubMed  Google Scholar 

  • Checkley AM, McShane H (2011) Tuberculosis vaccines: progress and challenges. Trends Pharmacol Sci 32:601–606

    Article  CAS  PubMed  Google Scholar 

  • Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM (2007) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6:785–796

    Article  CAS  PubMed  Google Scholar 

  • Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11

    Article  CAS  PubMed  Google Scholar 

  • de la Torre LG, Rosada RS, Trombone APF, Frantz FG, Coelho-Castelo AA, Silva CL et al (2009) The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids Surf B Biointerfaces 73:175–184

    Article  CAS  PubMed  Google Scholar 

  • Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM et al (2005) Exchanging ESAT6 with TB10. 4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol 174:6332–6339

    Article  CAS  PubMed  Google Scholar 

  • Elvang T, Christensen JP, Billeskov R, Hoang TTKT, Holst P, Thomsen AR et al (2009) CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10. 4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination. PLoS One 4:e5139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan Y, Sahdev P, Ochyl LJ, Akerberg JJ, Moon JJ (2015) Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release 208:121–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farsiani H, Mosavat A, Soleimanpour S, Sadeghian H, Eydgahi MRA, Ghazvini K et al (2016) Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6: CFP-10 complex. Mol BioSyst 12:2189–2201

    Article  CAS  PubMed  Google Scholar 

  • Fasihi-Ramandi M, Ghobadi-Ghadikolaee H, Ahmadi-Renani S, Taheri RA, Ahmadi K (2018) Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype. Artif Cells Nanomed Biotechnol 46(1):56–61. https://doi.org/10.1080/21691401.2017.1290646

    Article  PubMed  CAS  Google Scholar 

  • Garçon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL-and QS-21-containing adjuvant systems. Expert Rev Vaccines 10:471–486

    Article  CAS  PubMed  Google Scholar 

  • Garg T, Goyal AK (2014) Liposomes: targeted and controlled delivery system. Drug Deliv Lett 4:62–71

    Article  CAS  Google Scholar 

  • Girard MP, Fruth U, Kieny M-P (2005) A review of vaccine research and development: tuberculosis. Vaccine 23:5725–5731

    Article  CAS  PubMed  Google Scholar 

  • Glück R, Moser C, Metcalfe IC (2004) Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin Biol Ther 4:1139–1145

    Article  PubMed  Google Scholar 

  • Hashida M, Opanasopit P, Nishikawa M (2002) Factors affecting drug and gene delivery: effects of interaction with blood components. Crit Rev Ther Drug Carrier Syst 19(3):191–233

    Article  PubMed  Google Scholar 

  • Henriksen-Lacey M, Christensen D, Bramwell VW, Lindenstrøm T, Agger EM, Andersen P et al (2010a) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N′, N′-dimethylaminoethane) carbomyl] cholesterol (DC-Chol), and 1, 2-dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol Pharm 8:153–161

    Article  CAS  PubMed  Google Scholar 

  • Henriksen-Lacey M, Christensen D, Bramwell VW, Lindenstrøm T, Agger EM, Andersen P et al (2010b) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 145:102–108

    Article  CAS  PubMed  Google Scholar 

  • Hoang T, Aagaard C, Dietrich J, Cassidy JP, Dolganov G, Schoolnik GK et al (2013) ESAT-6 (EsxA) and TB10. 4 (EsxH) based vaccines for pre-and post-exposure tuberculosis vaccination. PLoS One 8:e80579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holten-Andersen L, Doherty T, Korsholm K, Andersen P (2004) Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 72:1608–1617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Ehrich M, Fuhrman K, Zhang C (2014) In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters. Nanoscale Res Lett 9:434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hussain MJ, Wilkinson A, Bramwell VW, Christensen D, Perrie Y (2014) Th1 immune responses can be modulated by varying dimethyldioctadecylammonium and distearoyl-sn-glycero-3-phosphocholine content in liposomal adjuvants. J Pharm Pharmacol 66:358–366

    Article  CAS  PubMed  Google Scholar 

  • Jeon B-Y, Kim S-C, Eum S-Y, Cho S-N (2011) The immunity and protective effects of antigen 85A and heat-shock protein X against progressive tuberculosis. Microbes Infect 13:284–290

    Article  CAS  PubMed  Google Scholar 

  • Joshi VB, Geary SM, Salem AK (2013) Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Hum Vaccin Immunother 9:2584–2590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimi SM, Sankian M, Khademi F, Tafaghodi M (2016) Chitosan (CHT) and trimethylchitosan (TMC) nanoparticles as adjuvant/delivery system for parenteral and nasal immunization against Mycobacterium tuberculosis (MTb) ESAT-6 antigen. Nanomed J 3:223–229

    CAS  Google Scholar 

  • Kaufmann SH (2013) Tuberculosis vaccines: time to think about the next generation. Semin Immunol 25(2):172–181. https://doi.org/10.1016/j.smim.2013.04.006

    Article  PubMed  CAS  Google Scholar 

  • Kebriaei A, Derakhshan M, Meshkat Z, Eidgahi MRA, Rezaee SA, Farsiani H et al (2016) Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis. Mol Biol Rep 43:911–922

    Article  CAS  PubMed  Google Scholar 

  • Khademi F, Derakhshan M, Sadeghi R (2016) The role of toll-like receptor gene polymorphisms in tuberculosis susceptibility: a systematic review and meta-analysis. Rev Clin Med 3:133–140

    Google Scholar 

  • Khademi F, Yousefi-Avarvand A, Derakhshan M, Meshkat Z, Tafaghodi M, Ghazvini K et al (2017a) Mycobacterium tuberculosis HspX/EsxS fusion protein: gene cloning, protein expression, and purification in Escherichia coli. Rep Biochem Mol Biol 6:15–21

    PubMed  PubMed Central  Google Scholar 

  • Khademi F, Yousefi-Avarvand A, Derakhshan M, Vaez H, Sadeghi R (2017b) Middle east Mycobacterium tuberculosis antibiotic resistance: a systematic review and meta-analysis. Infect Epidemiol Med 3:25–35

    Article  Google Scholar 

  • Kim M-G, Park JY, Shon Y, Kim G, Shim G, Oh Y-K (2014) Nanotechnology and vaccine development. Asian J Pharm Sci 9:227–235

    Article  Google Scholar 

  • Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y (2008) PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target 16:282–293

    Article  CAS  PubMed  Google Scholar 

  • Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL (2010) Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin Vaccine Immunol 17:793–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong H, Dong C, Xiong S (2014) A novel vaccine p846 encoding Rv3615c, Mtb10. 4, and Rv2660c elicits robust immune response and alleviates lung injury induced by Mycobacterium infection. Hum Vaccin Immunother 10:378–390

    Article  CAS  PubMed  Google Scholar 

  • Langermans JA, Doherty TM, Vervenne RA, van der Laan T, Lyashchenko K, Greenwald R et al (2005) Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23:2740–2750

    Article  CAS  PubMed  Google Scholar 

  • Li W, Szoka FC (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 24:438–449

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yu H, Zhang Y, Wang B, Jiang W, Da Z et al (2011) Immunogenicity and protective efficacy of a fusion protein vaccine consisting of antigen Ag85B and HspX against Mycobacterium tuberculosis infection in mice. Scand J Immunol 73:568–576

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Peng J, Hu L, Luo Y, Niu H, Bai C et al (2016) A multistage Mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother 12:1670–1677

    PubMed  PubMed Central  Google Scholar 

  • Luo Y, Wang B, Hu L, Yu H, Da Z, Jiang W et al (2009) Fusion protein Ag85B-MPT64 190–198-Mtb8. 4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Vaccine 27:6179–6185

    Article  CAS  PubMed  Google Scholar 

  • McNeil SE, Rosenkrands I, Agger EM, Andersen P, Perrie Y (2011) Subunit vaccines: distearoylphosphatidylcholine-based liposomes entrapping antigen offer a neutral alternative to dimethyldioctadecylammonium-based cationic liposomes as an adjuvant delivery system. J Pharm Sci 100:1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Mosavat A, Soleimanpour S, Farsiani H, Sadeghian H, Ghazvini K, Sankian M et al (2016) Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine. Infect Genet Evol 39:163–172

    Article  CAS  PubMed  Google Scholar 

  • Niu H, Hu L, Li Q, Da Z, Wang B, Tang K et al (2011) Construction and evaluation of a multistage Mycobacterium tuberculosis subunit vaccine candidate Mtb10. 4–HspX. Vaccine 29:9451–9458

    Article  CAS  PubMed  Google Scholar 

  • Nor NM, Musa M (2004) Approaches towards the development of a vaccine against tuberculosis: recombinant BCG and DNA vaccine. Tuberculosis 84:102–109

    Article  PubMed  Google Scholar 

  • Olsen AW, van Pinxteren LA, Okkels LM, Rasmussen PB, Andersen P (2001) Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun 69:2773–2778

    Article  CAS  PubMed Central  Google Scholar 

  • Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P (2004) Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun 72:6148–6150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ottenhoff TH, Kaufmann SH (2012) Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 8:e1002607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitt JM, Blankley S, McShane H, O’Garra A (2013) Vaccination against tuberculosis: how can we better BCG? Microb Pathog 58:2–16

    Article  PubMed  Google Scholar 

  • Rosada RS, de la Torre LG, Frantz FG, Trombone AP, Zárate-Bladés CR, Fonseca DM et al (2008) Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol 9:38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG (2012) Effectiveness, against tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome. J Colloid Interface Sci 373:102–109

    Article  CAS  PubMed  Google Scholar 

  • Rosenkrands I, Agger EM, Olsen AW, Korsholm KS, Andersen CS, Jensen KT et al (2005) Cationic liposomes containing mycobacterial lipids: a new powerful Th1 adjuvant system. Infect Immun 73:5817–5826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sable SB, Verma I, Khuller G (2005) Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine 23:4175–4184

    Article  CAS  PubMed  Google Scholar 

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccin 2:159–182

    Article  CAS  Google Scholar 

  • Soleimanpour S, Farsiani H, Mosavat A, Ghazvini K, Eydgahi MRA, Sankian M et al (2015) APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Appl Microbiol Biotechnol 99:10467–10480

    Article  CAS  PubMed  Google Scholar 

  • Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD Jr, Huang L (2006) Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 23:385–395

    Article  CAS  PubMed  Google Scholar 

  • Vartak A, Sucheck SJ (2016) Recent advances in subunit vaccine carriers. Vaccine 4:12

    Article  CAS  Google Scholar 

  • Wang CC, Zhu B, Fan X, Gicquel B, Zhang Y (2013) Systems approach to tuberculosis vaccine development. Respirology 18:412–420

    Article  PubMed  Google Scholar 

  • Xin Q, Niu H, Li Z, Zhang G, Hu L, Wang B et al (2013) Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS One 8:e72745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Pharmazie 66:158–164

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for preparing this review.

Compliance with Ethical Standards

This is a review article not involving any cellular, animal or human test.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramezan Ali Taheri or Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khademi, F., Taheri, R.A., Momtazi-Borojeni, A.A., Farnoosh, G., Johnston, T.P., Sahebkar, A. (2018). Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 175. Reviews of Physiology, Biochemistry and Pharmacology, vol 175. Springer, Cham. https://doi.org/10.1007/112_2018_9

Download citation

Publish with us

Policies and ethics