Skip to main content

Iron-Sulfur Protein Assembly in Human Cells

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology Vol. 174

Abstract

Iron-sulfur (Fe-S) clusters serve as a fundamental inorganic constituent of living cells ranging from bacteria to human. The importance of Fe-S clusters is underscored by their requirement as a co-factor for the functioning of different enzymes and proteins. The biogenesis of Fe-S cluster is a highly coordinated process which requires specialized cellular machinery. Presently, understanding of Fe-S cluster biogenesis in human draws meticulous attention since defects in the biogenesis process result in development of multiple diseases with unresolved solutions. Mitochondrion is the major cellular compartment of Fe-S cluster biogenesis, although cytosolic biogenesis machinery has been reported in eukaryotes, including in human. The core biogenesis pathway comprises two steps. The process initiates with the assembly of Fe-S cluster on a platform scaffold protein in the presence of iron and sulfur donor proteins. Subsequent process is the transfer and maturation of the cluster to a bonafide target protein. Human Fe-S cluster biogenesis machinery comprises the mitochondrial iron-sulfur cluster (ISC) assembly and export system along with the cytosolic Fe-S cluster assembly (CIA) machinery. Impairment in the Fe-S cluster machinery components results in cellular dysfunction leading to various mitochondrial pathophysiological consequences. The current review highlights recent developments and understanding in the domain of Fe-S cluster assembly biology in higher eukaryotes, particularly in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C, Monticelli A, Garbi C, Acquaviva AM, Cocozza S (2005) Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J Cell Sci 118(17):3917–3924. doi:10.1242/jcs.02516

    Article  CAS  PubMed  Google Scholar 

  • Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39(27):7856–7862

    Article  CAS  Google Scholar 

  • Ajit Bolar N, Vanlander AV, Wilbrecht C, Van der Aa N, Smet J, De Paepe B, Vandeweyer G, Kooy F, Eyskens F, De Latter E, Delanghe G, Govaert P, Leroy JG, Loeys B, Lill R, Van Laer L, Van Coster R (2013) Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 22(13):2590–2602. doi:10.1093/hmg/ddt107

    Article  CAS  PubMed  Google Scholar 

  • Al-Hassnan ZN, Al-Dosary M, Alfadhel M, Faqeih EA, Alsagob M, Kenana R, Almass R, Al-Harazi OS, Al-Hindi H, Malibari OI, Almutari FB, Tulbah S, Alhadeq F, Al-Sheddi T, Alamro R, AlAsmari A, Almuntashri M, Alshaalan H, Al-Mohanna FA, Colak D, Kaya N (2015) ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. J Med Genet 52(3):186–194. doi:10.1136/jmedgenet-2014-102592

    Article  CAS  PubMed  Google Scholar 

  • Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J Mol Biol 353(5):937–944. doi:10.1016/j.jmb.2005.08.049

    Article  CAS  PubMed  Google Scholar 

  • Aloria K, Schilke B, Andrew A, Craig EA (2004) Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep 5(11):1096–1101. doi:10.1038/sj.embor.7400272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S (2014) Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 23(6):833–842. doi:10.1002/pro.2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 1800(8):783–792. doi:10.1016/j.bbagen.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Castro C, Saini A, Outten FW (2008) Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72(1):110–125. doi:10.1128/MMBR.00034-07. Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, Scharer GH, Aicher J, Creadon-Swindell G, Geiger E, KN ML, Lee WT, Deshpande C, Freckmann ML, Shih LY, Wasserstein M, Rasmussen MB, Lund AM, Procopis P, Cameron JM, Robinson BH, Brown GK, Brown RM, Compton AG, Dieckmann CL, Collard R, Coughlin CR 2nd, Spector E, Wempe MF, Van Hove JL (2014) Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137(2):366–379. doi:10.1093/brain/awt328

    Article  PubMed  Google Scholar 

  • Balk J, Lobreaux S (2005) Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10(7):324–331. doi:10.1016/j.tplants.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J 23(10):2105–2115. doi:10.1038/sj.emboj.7600216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K (2012) An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc 134(3):1442–1445. doi:10.1021/ja209881f

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Giachetti A, Jaiswal D, Mikolajczyk M, Piccioli M, Winkelmann J (2013) Molecular view of an electron transfer process essential for iron-sulfur protein biogenesis. Proc Natl Acad Sci U S A 110(18):7136–7141. doi:10.1073/pnas.1302378110

    Article  PubMed  PubMed Central  Google Scholar 

  • Banci L, Brancaccio D, Ciofi-Baffoni S, Del Conte R, Gadepalli R, Mikolajczyk M, Neri S, Piccioli M, Winkelmann J (2014) [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis. Proc Natl Acad Sci U S A 111(17):6203–6208. doi:10.1073/pnas.1400102111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Chandramouli K, Johnson MK (2008a) Iron-sulfur cluster biosynthesis. Biochem Soc Trans 36(6):1112–1119. doi:10.1042/BST0361112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Gama F, Molina-Navarro MM, Gualberto JM, Claxton R, Naik SG, Huynh BH, Herrero E, Jacquot JP, Johnson MK, Rouhier N (2008b) Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO J 27(7):1122–1133. doi:10.1038/emboj.2008.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilschmidt LK, Puccio HM (2014) Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 100:48–60. doi:10.1016/j.biochi.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  • Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5(1):2–15

    Article  CAS  Google Scholar 

  • Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7(15):1442–1449

    Article  CAS  Google Scholar 

  • Beinert H, Kiley PJ (1999) Fe-S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3(2):152–157. doi:10.1016/S1367-5931(99)80027-1

    Article  CAS  PubMed  Google Scholar 

  • Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277(5326):653–659

    Article  CAS  Google Scholar 

  • Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, Bishop DF (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96(9):3256–3264

    CAS  PubMed  Google Scholar 

  • Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y, Elsasser HP, Lill R (2006) Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol Cell Biol 26(15):5675–5687. doi:10.1128/MCB.00112-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitto E, Bingman CA, Bittova L, Kondrashov DA, Bannen RM, Fox BG, Markley JL, Phillips GN Jr (2008) Structure of human J-type co-chaperone HscB reveals a tetracysteine metal-binding domain. J Biol Chem 283(44):30184–30192. doi:10.1074/jbc.M804746200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE (2008) Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry 47(48):12795–12801. doi:10.1021/bi801565j

    Article  CAS  PubMed  Google Scholar 

  • Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE (2011) Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange. Biochemistry 50(44):9641–9650. doi:10.1021/bi201123z

    Article  CAS  PubMed  Google Scholar 

  • Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP (2014) Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53(30):4904–4913. doi:10.1021/bi500532e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzoska K, Meczynska S, Kruszewski M (2006) Iron-sulfur cluster proteins: electron transfer and beyond. Acta Biochim Pol 53(4):685–691

    CAS  PubMed  Google Scholar 

  • Buckel W, Hetzel M, Kim J (2004) ATP-driven electron transfer in enzymatic radical reactions. Curr Opin Chem Biol 8(5):462–467. doi:10.1016/j.cbpa.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  • Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J (2008) The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J 27(12):1736–1746. doi:10.1038/emboj.2008.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai K, Frederick RO, Kim JH, Reinen NM, Tonelli M, Markley JL (2013) Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU). J Biol Chem 288(40):28755–28770. doi:10.1074/jbc.M113.482042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42(10):851–858. doi:10.1038/ng.659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, Levi S, Iolascon A (2007) The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110(4):1353–1358. doi:10.1182/blood-2007-02-072520

    Article  CAS  PubMed  Google Scholar 

  • Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA, Tong WH, Ogilvie I, Shoubridge EA, Robinson BH (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89(4):486–495. doi:10.1016/j.ajhg.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavadini P, Biasiotto G, Poli M, Levi S, Verardi R, Zanella I, Derosas M, Ingrassia R, Corrado M, Arosio P (2007) RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood 109(8):3552–3559. doi:10.1182/blood-2006-08-041632

    Article  CAS  PubMed  Google Scholar 

  • Chandramouli K, Johnson MK (2006) HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45(37):11087–11095. doi:10.1021/bi061237w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandramouli K, Unciuleac MC, Naik S, Dean DR, Huynh BH, Johnson MK (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46(23):6804–6811. doi:10.1021/bi6026659

    Article  CAS  PubMed  Google Scholar 

  • Chen OS, Hemenway S, Kaplan J (2002) Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Proc Natl Acad Sci U S A 99(19):12321–12326. doi:10.1073/pnas.192449599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin F, Martelli A, Clemancey M, Latour JM, Gambarelli S, Zeppieri L, Birck C, Page A, Puccio H, Ollagnier de Choudens S (2012) Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. J Am Chem Soc 135(2):733–740. doi:10.1021/ja308736e

    Article  CAS  Google Scholar 

  • Condo I, Ventura N, Malisan F, Tomassini B, Testi R (2006) A pool of extramitochondrial frataxin that promotes cell survival. J Biol Chem 281(24):16750–16756. doi:10.1074/jbc.M511960200

    Article  CAS  PubMed  Google Scholar 

  • Condo I, Malisan F, Guccini I, Serio D, Rufini A, Testi R (2010) Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum Mol Genet 19(7):1221–1229. doi:10.1093/hmg/ddp592

    Article  CAS  PubMed  Google Scholar 

  • Corbin MV, Rockx DA, Oostra AB, Joenje H, Dorsman JC (2015) The iron-sulfur cluster assembly network component NARFL is a key element in the cellular defense against oxidative stress. Free Radic Biol Med 89:863–872. doi:10.1016/j.freeradbiomed.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  • Cory SA, Van Vranken JG, Brignole EJ, Patra S, Winge DR, Drennan CL, Rutter J, Barondeau DP (2017) Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Proc Natl Acad Sci U S A 114(27):E5325–E5334. doi:10.1073/pnas.1702849114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EA, Marszalek J (2002) A specialized mitochondrial molecular chaperone system: a role in formation of Fe/S centers. Cell Mol Life Sci 59(10):1658–1665

    Article  CAS  Google Scholar 

  • Cupp-Vickery JR, Urbina H, Vickery LE (2003) Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J Mol Biol 330(5):1049–1059

    Article  CAS  Google Scholar 

  • Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE (2004) Crystal structure of IscA, an iron-sulfur cluster assembly protein from Escherichia coli. J Mol Biol 338(1):127–137. doi:10.1016/j.jmb.2004.02.027

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Schwendtmayer C, Schurmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287(5453):655–658

    Article  CAS  Google Scholar 

  • Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30(4):590–595

    Article  CAS  Google Scholar 

  • Debray FG, Stumpfig C, Vanlander AV, Dideberg V, Josse C, Caberg JH, Boemer F, Bours V, Stevens R, Seneca S, Smet J, Lill R, van Coster R (2015) Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy. J Inherit Metab Dis 38(6):1147–1153. doi:10.1007/s10545-015-9857-1

    Article  CAS  PubMed  Google Scholar 

  • Di Fonzo A, Ronchi D, Lodi T, Fassone E, Tigano M, Lamperti C, Corti S, Bordoni A, Fortunato F, Nizzardo M, Napoli L, Donadoni C, Salani S, Saladino F, Moggio M, Bresolin N, Ferrero I, Comi GP (2009) The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet 84(5):594–604. doi:10.1016/j.ajhg.2009.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drysdale J, Arosio P, Invernizzi R, Cazzola M, Volz A, Corsi B, Biasiotto G, Levi S (2002) Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol Dis 29(3):376–383

    Article  CAS  Google Scholar 

  • Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278(32):29719–29727. doi:10.1074/jbc.M303527200

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J (2004) Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279(28):29167–29174. doi:10.1074/jbc.M402947200

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz R, Marszalek J, Schilke B, Craig EA, Lill R, Muhlenhoff U (2006) The Hsp70 chaperone Ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein Isu1p. J Biol Chem 281(12):7801–7808. doi:10.1074/jbc.M513301200

    Article  CAS  PubMed  Google Scholar 

  • Farhan SM, Wang J, Robinson JF, Lahiry P, Siu VM, Prasad C, Kronick JB, Ramsay DA, Rupar CA, Hegele RA (2014) Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency. Mol Genet Genomic Med 2(1):73–80. doi:10.1002/mgg3.46

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Cortes X, Font A, Bujan N, Navarro-Sastre A, Matalonga L, Arranz JA, Riudor E, del Toro M, Garcia-Cazorla A, Campistol J, Briones P, Ribes A, Tort F (2012) Protein expression profiles in patients carrying NFU1 mutations. Contribution to the pathophysiology of the disease. J Inherit Metab Dis 36(5):841–847. doi:10.1007/s10545-012-9565-z

    Article  CAS  PubMed  Google Scholar 

  • Fontecave M, Ollagnier-de-Choudens S (2008) Iron-sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch Biochem Biophys 474(2):226–237. doi:10.1016/j.abb.2007.12.014

    Article  CAS  PubMed  Google Scholar 

  • Fontecave M, Choudens SO, Py B, Barras F (2005) Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 10(7):713–721. doi:10.1007/s00775-005-0025-1

    Article  CAS  PubMed  Google Scholar 

  • Fox NG, Chakrabarti M, McCormick SP, Lindahl PA, Barondeau DP (2015a) The human iron-sulfur assembly complex catalyzes the synthesis of [2Fe-2S] clusters on ISCU2 that can be transferred to acceptor molecules. Biochemistry 54(25):3871–3879. doi:10.1021/bi5014485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP (2015b) Frataxin accelerates [2Fe-2S] cluster formation on the human Fe-S assembly complex. Biochemistry 54(25):3880–3889. doi:10.1021/bi5014497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazzon J, Dean DR (2003) Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr Opin Chem Biol 7(2):166–173

    Article  CAS  Google Scholar 

  • Friemel M, Marelja Z, Li K, Leimkuhler S (2017) The N-terminus of iron-sulfur cluster assembly factor ISD11 is crucial for subcellular targeting and interaction with l-cysteine desulfurase NFS1. Biochemistry 56(12):1797–1808. doi:10.1021/acs.biochem.6b01239

    Article  CAS  PubMed  Google Scholar 

  • Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ (2012) MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337(6091):243–245. doi:10.1126/science.1219664

    Article  CAS  PubMed  Google Scholar 

  • Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294(4):897–907. doi:10.1006/jmbi.1999.3294

    Article  CAS  PubMed  Google Scholar 

  • Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U (2008) Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28(5):1851–1861. doi:10.1128/MCB.01963-07

    Article  CAS  PubMed  Google Scholar 

  • Gerber J, Muhlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4(9):906–911. doi:10.1038/sj.embor.embor918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber J, Neumann K, Prohl C, Muhlenhoff U, Lill R (2004) The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol Cell Biol 24(11):4848–4857. doi:10.1128/MCB.24.11.4848-4857.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami AV, Chittoor B, D’Silva P (2010) Understanding the functional interplay between mammalian mitochondrial Hsp70 chaperone machine components. J Biol Chem 285(25):19472–19482. doi:10.1074/jbc.M110.105957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami AV, Samaddar M, Sinha D, Purushotham J, D’Silva P (2012) Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson’s disease. Hum Mol Genet 21(15):3317–3332. doi:10.1093/hmg/dds162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. doi:10.1146/annurev.bi.54.070185.005055

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142(1):24–38. doi:10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  • Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, Farina L, Ghezzi D, Moroni I (2014) Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front Genet 5:412. doi:10.3389/fgene.2014.00412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett JT (2005) The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Arch Biochem Biophys 433(1):312–321. doi:10.1016/j.abb.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J (2006) Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5(7):1193–1204. doi:10.1074/mcp.M500382-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Johansson C, Roos AK, Montano SJ, Sengupta R, Filippakopoulos P, Guo K, von Delft F, Holmgren A, Oppermann U, Kavanagh KL (2011) The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity. Biochem J 433(2):303–311. doi:10.1042/BJ20101286

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281. doi:10.1146/annurev.biochem.74.082803.133518

    Article  CAS  PubMed  Google Scholar 

  • Kaiser JT, Clausen T, Bourenkow GP, Bartunik HD, Steinbacher S, Huber R (2000) Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly. J Mol Biol 297(2):451–464. doi:10.1006/jmbi.2000.3581

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592. doi:10.1038/nrm2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kevelam SH, Rodenburg RJ, Wolf NI, Ferreira P, Lunsing RJ, Nijtmans LG, Mitchell A, Arroyo HA, Rating D, Vanderver A, van Berkel CG, Abbink TE, Heutink P, van der Knaap MS (2013) NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern. Neurology 80(17):1577–1583. doi:10.1212/WNL.0b013e31828f1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiley PJ, Beinert H (2003) The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6(2):181–185

    Article  CAS  Google Scholar 

  • Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18(14):3981–3989. doi:10.1093/emboj/18.14.3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollberg G, Tulinius M, Melberg A, Darin N, Andersen O, Holmgren D, Oldfors A, Holme E (2009) Clinical manifestation and a new ISCU mutation in iron-sulphur cluster deficiency myopathy. Brain 132(8):2170–2179. doi:10.1093/brain/awp152

    Article  PubMed  Google Scholar 

  • Lange H, Kispal G, Lill R (1999) Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 274(27):18989–18996

    Article  CAS  Google Scholar 

  • Lange H, Kaut A, Kispal G, Lill R (2000) A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc Natl Acad Sci U S A 97(3):1050–1055

    Article  CAS  Google Scholar 

  • Lange H, Lisowsky T, Gerber J, Muhlenhoff U, Kispal G, Lill R (2001) An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep 2(8):715–720. doi:10.1093/embo-reports/kve161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlois d’Estaintot B, Santambrogio P, Granier T, Gallois B, Chevalier JM, Precigoux G, Levi S, Arosio P (2004) Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala. J Mol Biol 340(2):277–293. doi:10.1016/j.jmb.2004.04.036

    Article  CAS  PubMed  Google Scholar 

  • Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276(27):24437–24440. doi:10.1074/jbc.C100141200

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cowan JA (2015) Glutathione-coordinated [2Fe-2S] cluster: a viable physiological substrate for mitochondrial ABCB7 transport. Chem Commun (Camb) 51(12):2253–2255. doi:10.1039/c4cc09175b

    Article  CAS  Google Scholar 

  • Li H, Outten CE (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 51(22):4377–4389. doi:10.1021/bi300393z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Kogan M, Knight SA, Pain D, Dancis A (1999) Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 274(46):33025–33034

    Article  CAS  Google Scholar 

  • Li J, Saxena S, Pain D, Dancis A (2001) Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J Biol Chem 276(2):1503–1509. doi:10.1074/jbc.M007198200

    Article  CAS  PubMed  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838. doi:10.1038/nature08301

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25(8):352–356

    Article  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30(3):133–141. doi:10.1016/j.tibs.2005.01.006

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486. doi:10.1146/annurev.cellbio.22.010305.104538

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700. doi:10.1146/annurev.biochem.76.052705.162653

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Dutkiewicz R, Elsasser HP, Hausmann A, Netz DJ, Pierik AJ, Stehling O, Urzica E, Muhlenhoff U (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763(7):652–667. doi:10.1016/j.bbamcr.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–1508. doi:10.1016/j.bbamcr.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • Lim SC, Friemel M, Marum JE, Tucker EJ, Bruno DL, Riley LG, Christodoulou J, Kirk EP, Boneh A, DeGennaro CM, Springer M, Mootha VK, Rouault TA, Leimkuhler S, Thorburn DR, Compton AG (2013) Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum Mol Genet 22(22):4460–4473. doi:10.1093/hmg/ddt295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Guo S, Anderson GJ, Camaschella C, Han B, Nie G (2014) Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood 124(17):2750–2751. doi:10.1182/blood-2014-08-598508

    Article  CAS  PubMed  Google Scholar 

  • Lossos A, Stumpfig C, Stevanin G, Gaussen M, Zimmerman BE, Mundwiller E, Asulin M, Chamma L, Sheffer R, Misk A, Dotan S, Gomori JM, Ponger P, Brice A, Lerer I, Meiner V, Lill R (2015) Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology 84(7):659–667. doi:10.1212/WNL.0000000000001270

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Bitoun JP, Tan G, Wang W, Min W, Ding H (2010) Iron-binding activity of human iron-sulfur cluster assembly protein hIscA1. Biochem J 428(1):125–131. doi:10.1042/BJ20100122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maio N, Rouault TA (2015) Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim Biophys Acta 1853(6):1493–1512. doi:10.1016/j.bbamcr.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  • Maio N, Singh A, Uhrigshardt H, Saxena N, Tong WH, Rouault TA (2014) Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab 19(3):445–457. doi:10.1016/j.cmet.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Marelja Z, Stocklein W, Nimtz M, Leimkuhler S (2008) A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J Biol Chem 283(37):25178–25185. doi:10.1074/jbc.M804064200

    Article  CAS  PubMed  Google Scholar 

  • Marelja Z, Mullick Chowdhury M, Dosche C, Hille C, Baumann O, Lohmannsroben HG, Leimkuhler S (2013) The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 8(4):e60869. doi:10.1371/journal.pone.0060869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melber A, Na U, Vashisht A, Weiler BD, Lill R, Wohlschlegel JA, Winge DR (2016) Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. Elife 5. doi:10.7554/eLife.15991

  • Merchant S, Dreyfuss BW (1998) Posttranslational assembly of photosynthetic metalloproteins. Annu Rev Plant Physiol Plant Mol Biol 49:25–51. doi:10.1146/annurev.arplant.49.1.25

    Article  CAS  PubMed  Google Scholar 

  • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121(7):1059–1069. doi:10.1016/j.cell.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  • Meyer J (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13(2):157–170. doi:10.1007/s00775-007-0318-7

    Article  CAS  PubMed  Google Scholar 

  • Muhlenhoff U, Richhardt N, Gerber J, Lill R (2002a) Characterization of iron-sulfur protein assembly in isolated mitochondria. A requirement for ATP, NADH, and reduced iron. J Biol Chem 277(33):29810–29816. doi:10.1074/jbc.M204675200

    Article  CAS  PubMed  Google Scholar 

  • Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002b) The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11(17):2025–2036

    Article  Google Scholar 

  • Muhlenhoff U, Gerber J, Richhardt N, Lill R (2003a) Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J 22(18):4815–4825. doi:10.1093/emboj/cdg446

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G (2003b) A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278(42):40612–40620. doi:10.1074/jbc.M307847200

    Article  CAS  PubMed  Google Scholar 

  • Muhlenhoff U, Richter N, Pines O, Pierik AJ, Lill R (2011) Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 286(48):41205–41216. doi:10.1074/jbc.M111.296152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair M, Adinolfi S, Pastore C, Kelly G, Temussi P, Pastore A (2004) Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites. Structure 12(11):2037–2048. doi:10.1016/j.str.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H (2007) Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Mol Cell Biol 27(8):2841–2847. doi:10.1128/MCB.01321-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, Del Toro M, Labayru MT, Landa J, Font A, Garcia-Villoria J, Merinero B, Ugarte M, Gutierrez-Solana LG, Campistol J, Garcia-Cazorla A, Vaquerizo J, Riudor E, Briones P, Elpeleg O, Ribes A, Lill R (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89(5):656–667. doi:10.1016/j.ajhg.2011.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor DJ, Stines AP, Hoogenraad NJ, Hoj PB (1998) Evidence for the existence of distinct mammalian cytosolic, microsomal, and two mitochondrial GrpE-like proteins, the co-chaperones of specific Hsp70 members. J Biol Chem 273(33):21169–21177

    Article  CAS  Google Scholar 

  • Netz DJ, Pierik AJ, Stumpfig M, Muhlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3(5):278–286. doi:10.1038/nchembio872

    Article  CAS  PubMed  Google Scholar 

  • Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6(10):758–765. doi:10.1038/nchembio.432

    Article  CAS  PubMed  Google Scholar 

  • Netz DJ, Pierik AJ, Stumpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE, Lill R (2012) A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem 287(15):12365–12378. doi:10.1074/jbc.M111.328914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizon M, Boutron A, Boddaert N, Slama A, Delpech H, Sardet C, Brassier A, Habarou F, Delahodde A, Correia I, Ottolenghi C, de Lonlay P (2014) Leukoencephalopathy with cysts and hyperglycinemia may result from NFU1 deficiency. Mitochondrion 15:59–64. doi:10.1016/j.mito.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  • Nordin A, Larsson E, Thornell LE, Holmberg M (2011) Tissue-specific splicing of ISCU results in a skeletal muscle phenotype in myopathy with lactic acidosis, while complete loss of ISCU results in early embryonic death in mice. Hum Genet 129(4):371–378. doi:10.1007/s00439-010-0931-3

    Article  CAS  PubMed  Google Scholar 

  • Nordin A, Larsson E, Holmberg M (2012) The defective splicing caused by the ISCU intron mutation in patients with myopathy with lactic acidosis is repressed by PTBP1 but can be derepressed by IGF2BP1. Hum Mutat 33(3):467–470. doi:10.1002/humu.22002

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Lind L, Thornell LE, Holmberg M (2008) Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 17(11):1666–1672. doi:10.1093/hmg/ddn057

    Article  CAS  PubMed  Google Scholar 

  • Orme-Johnson WH (1973) Iron-sulfur proteins: structure and function. Annu Rev Biochem 42:159–204. doi:10.1146/annurev.bi.42.070173.001111

    Article  CAS  PubMed  Google Scholar 

  • Ozer HK, Dlouhy AC, Thornton JD, Hu J, Liu Y, Barycki JJ, Balk J, Outten CE (2015) Cytosolic Fe-S cluster protein maturation and iron regulation are independent of the mitochondrial Erv1/Mia40 import system. J Biol Chem 290(46):27829–27840. doi:10.1074/jbc.M115.682179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Golla R, Yoon H, Dancis A, Pain D (2012) Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Biochem J 448(2):171–187. doi:10.1042/BJ20120951

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Gordon DM, Pain J, Stemmler TL, Dancis A, Pain D (2013) Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly. J Biol Chem 288(52):36773–36786. doi:10.1074/jbc.M113.525857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  Google Scholar 

  • Parent A, Elduque X, Cornu D, Belot L, Le Caer JP, Grandas A, Toledano MB, D’Autreaux B (2015) Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols. Nat Commun 6:5686. doi:10.1038/ncomms6686

    Article  CAS  PubMed  Google Scholar 

  • Paul VD, Lill R (2015) Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim Biophys Acta 1853(6):1528–1539. doi:10.1016/j.bbamcr.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  • Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F (2007) CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe-2S] cluster. Biochemistry 46(51):15018–15026. doi:10.1021/bi7013272

    Article  CAS  PubMed  Google Scholar 

  • Pondarre C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 15(6):953–964. doi:10.1093/hmg/ddl012

    Article  CAS  PubMed  Google Scholar 

  • Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A (2010) Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat Commun 1:95. doi:10.1038/ncomms1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27(2):181–186. doi:10.1038/84818

    Article  CAS  PubMed  Google Scholar 

  • Pukszta S, Schilke B, Dutkiewicz R, Kominek J, Moczulska K, Stepien B, Reitenga KG, Bujnicki JM, Williams B, Craig EA, Marszalek J (2010) Co-evolution-driven switch of J-protein specificity towards an Hsp70 partner. EMBO Rep 11(5):360–365. doi:10.1038/embor.2010.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raulfs EC, O’Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR (2008) In vivo iron-sulfur cluster formation. Proc Natl Acad Sci U S A 105(25):8591–8596. doi:10.1073/pnas.0803173105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rees DC (2002) Great metalloclusters in enzymology. Annu Rev Biochem 71:221–246. doi:10.1146/annurev.biochem.71.110601.135406

    Article  CAS  PubMed  Google Scholar 

  • Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4(5):559–566

    Article  CAS  Google Scholar 

  • Rees DC, Howard JB (2003) The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300(5621):929–931. doi:10.1126/science.1083075

    Article  CAS  PubMed  Google Scholar 

  • Ribbe MW, Hu Y, Hodgson KO, Hedman B (2014) Biosynthesis of nitrogenase metalloclusters. Chem Rev 114(8):4063–4080. doi:10.1021/cr400463x

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19(12):8180–8190

    Article  CAS  Google Scholar 

  • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13(4):1109–1121. doi:10.1091/mbc.01-10-0517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5(2):155–164. doi:10.1242/dmm.009019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouault TA, Tong WH (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6(4):345–351. doi:10.1038/nrm1620

    Article  CAS  PubMed  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24(8):398–407. doi:10.1016/j.tig.2008.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royer-Bertrand B, Castillo-Taucher S, Moreno-Salinas R, Cho TJ, Chae JH, Choi M, Kim OH, Dikoglu E, Campos-Xavier B, Girardi E, Superti-Furga G, Bonafe L, Rivolta C, Unger S, Superti-Furga A (2015) Mutations in the heat-shock protein A9 (HSPA9) gene cause the EVEN-PLUS syndrome of congenital malformations and skeletal dysplasia. Sci Rep 5:17154. doi:10.1038/srep17154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha PP, Kumar SK, Srivastava S, Sinha D, Pareek G, D’Silva P (2014) The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem 289(15):10359–10377. doi:10.1074/jbc.M113.526665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha PP, Srivastava S, Kumar SKP, Sinha D, D’Silva P (2015) Mapping key residues of ISD11 critical for NFS1-ISD11 subcomplex stability: implications in the development of mitochondrial disorder, COXPD19. J Biol Chem 290(43):25876–25890. doi:10.1074/jbc.M115.678508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilke B, Williams B, Knieszner H, Pukszta S, D’Silva P, Craig EA, Marszalek J (2006) Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr Biol 16(16):1660–1665. doi:10.1016/j.cub.2006.06.069

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Abe K, Ciesielski SJ, Schmidt PJ, Campagna DR, Rahimov F, Schilke BA, Cuijpers M, Rieneck K, Lausen B, Linenberger ML, Sendamarai AK, Guo C, Hofmann I, Newburger PE, Matthews D, Shimamura A, Snijders PJ, Towne MC, Niemeyer CM, Watson HG, Dziegiel MH, Heeney MM, May A, Bottomley SS, Swinkels DW, Markianos K, Craig EA, Fleming MD (2015) Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood 126(25):2734–2738. doi:10.1182/blood-2015-09-659854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakamuri P, Zhang B, Johnson MK (2012) Monothiol glutaredoxins function in storing and transporting [Fe2S2] clusters assembled on IscU scaffold proteins. J Am Chem Soc 134(37):15213–15216. doi:10.1021/ja306061x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S, Elsasser HP, Wittig I, Balk J, Brandt U, Lill R (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29(22):6059–6073. doi:10.1128/MCB.00817-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A 107(26):11775–11780. doi:10.1073/pnas.1004250107

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsasser HP, Muhlenhoff U, Lill R (2012) The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23(7):1157–1166. doi:10.1091/mbc.E11-09-0772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Ghosh MC, Tong WH, Rouault TA (2009) Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum Mol Genet 18(16):3014–3025. doi:10.1093/hmg/ddp239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA (2012) Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim Biophys Acta 1823(2):484–492. doi:10.1016/j.bbamcr.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y, Kamikubo H, Nishi Y, Masako T, Kataoka M, Kobayashi Y, Fukuyama K, Takahashi Y (2007) Characterization and crystallization of an IscU-type scaffold protein with bound [2Fe-2S] cluster from the hyperthermophile, aquifex aeolicus. J Biochem 142(5):577–586. doi:10.1093/jb/mvm163

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y, Wada K, Fukuyama K, Takahashi Y (2008) The asymmetric trimeric architecture of [2Fe-2S] IscU: implications for its scaffolding during iron-sulfur cluster biosynthesis. J Mol Biol 383(1):133–143. doi:10.1016/j.jmb.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  • Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277(30):26944–26949. doi:10.1074/jbc.M200677200

    Article  CAS  PubMed  Google Scholar 

  • Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) Sulfur transfer from IscS to IscU: the first step in iron-sulfur cluster biosynthesis. J Am Chem Soc 123(44):11103–11104

    Article  CAS  Google Scholar 

  • Song D, Lee FS (2008) A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis. J Biol Chem 283(14):9231–9238. doi:10.1074/jbc.M708077200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Lee FS (2011) Mouse knock-out of IOP1 protein reveals its essential role in mammalian cytosolic iron-sulfur protein biogenesis. J Biol Chem 286(18):15797–15805. doi:10.1074/jbc.M110.201731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Tu Z, Lee FS (2009) Human ISCA1 interacts with IOP1/NARFL and functions in both cytosolic and mitochondrial iron-sulfur protein biogenesis. J Biol Chem 284(51):35297–35307. doi:10.1074/jbc.M109.040014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, Horovitz Y, Khayat M, Shalev SA, Feuk L, Elpeleg O (2014) Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur J Hum Genet 22(7):902–906. doi:10.1038/ejhg.2013.269

    Article  CAS  PubMed  Google Scholar 

  • Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337(6091):195–199. doi:10.1126/science.1219723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2013) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab 18(2):187–198. doi:10.1016/j.cmet.2013.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77. doi:10.1016/j.biochi.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  • Tonduti D, Dorboz I, Imbard A, Slama A, Boutron A, Pichard S, Elmaleh M, Vallee L, Benoist JF, Ogier H, Boespflug-Tanguy O (2015) New spastic paraplegia phenotype associated to mutation of NFU1. Orphanet J Rare Dis 10:13. doi:10.1186/s13023-015-0237-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong WH, Rouault T (2000) Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19(21):5692–5700. doi:10.1093/emboj/19.21.5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong WH, Jameson GN, Huynh BH, Rouault TA (2003) Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 100(17):9762–9767. doi:10.1073/pnas.1732541100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker EJ, Mimaki M, Compton AG, McKenzie M, Ryan MT, Thorburn DR (2012) Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum Mutat 33(2):411–418. doi:10.1002/humu.21654

    Article  CAS  PubMed  Google Scholar 

  • Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA (2010) Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Hum Mol Genet 19(19):3816–3834. doi:10.1093/hmg/ddq301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BH, Johnson MK, Dean DR (2007) In vitro activation of apo-aconitase using a [4Fe-4S] cluster-loaded form of the IscU [Fe-S] cluster scaffolding protein. Biochemistry 46(23):6812–6821. doi:10.1021/bi6026665

    Article  CAS  PubMed  Google Scholar 

  • Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem 276(48):44521–44526. doi:10.1074/jbc.M106907200

    Article  CAS  PubMed  Google Scholar 

  • Urzica E, Pierik AJ, Muhlenhoff U, Lill R (2009) Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48(22):4946–4958. doi:10.1021/bi900312x

    Article  CAS  PubMed  Google Scholar 

  • Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U (2013) The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 24(12):1830–1841. doi:10.1091/mbc.E12-09-0644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vranken JG, Jeong MY, Wei P, Chen YC, Gygi SP, Winge DR, Rutter J (2016) The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. Elife 5. doi:10.7554/eLife.17828

  • Vernis L, Facca C, Delagoutte E, Soler N, Chanet R, Guiard B, Faye G, Baldacci G (2009) A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS One 4(2):e4376. doi:10.1371/journal.pone.0004376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhwa R, Ryu J, Ahn HM, Saxena N, Chaudhary A, Yun CO, Kaul SC (2015) Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem 290(13):8447–8456. doi:10.1074/jbc.M114.627463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Langer NB, Shaw GC, Yang G, Li L, Kaplan J, Paw BH, Bloomer JR (2011) Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Exp Hematol 39(7):784–794. doi:10.1016/j.exphem.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, Hurt E, Muhlenhoff U, Banci L, Lill R (2014) Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun 5:5013. doi:10.1038/ncomms6013

    Article  CAS  PubMed  Google Scholar 

  • Westermann B, Prip-Buus C, Neupert W, Schwarz E (1995) The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. EMBO J 14(14):3452–3460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, Meyer HE, Ryan MT, Meisinger C, Muhlenhoff U, Lill R, Pfanner N (2006) Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO J 25(1):184–195. doi:10.1038/sj.emboj.7600906

    Article  CAS  PubMed  Google Scholar 

  • Willems P, Wanschers BF, Esseling J, Szklarczyk R, Kudla U, Duarte I, Forkink M, Nooteboom M, Swarts H, Gloerich J, Nijtmans L, Koopman W, Huynen MA (2013) BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid Redox Signal 18(2):129–138. doi:10.1089/ars.2011.4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittung-Stafshede P (2002) Role of cofactors in protein folding. Acc Chem Res 35(4):201–208

    Article  CAS  Google Scholar 

  • Wohlgamuth-Benedum JM, Rubio MA, Paris Z, Long S, Poliak P, Lukes J, Alfonzo JD (2009) Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J Biol Chem 284(36):23947–23953. doi:10.1074/jbc.M109.029421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Mansy SS, Wu Sp SP, Surerus KK, Foster MW, Cowan JA (2002) Characterization of an iron-sulfur cluster assembly protein (ISU1) from Schizosaccharomyces pombe. Biochemistry 41(15):5024–5032

    Article  CAS  Google Scholar 

  • Wydro MM, Balk J (2013) Insights into the pathogenic character of a common NUBPL branch-site mutation associated with mitochondrial disease and complex I deficiency using a yeast model. Dis Model Mech 6(5):1279–1284. doi:10.1242/dmm.012682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan R, Adinolfi S, Pastore A (2015) Ferredoxin, in conjunction with NADPH and ferredoxin-NADP reductase, transfers electrons to the IscS/IscU complex to promote iron-sulfur cluster assembly. Biochim Biophys Acta 1854(9):1113–1117. doi:10.1016/j.bbapap.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49(24):4945–4956. doi:10.1021/bi1004798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon T, Cowan JA (2003) Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc 125(20):6078–6084. doi:10.1021/ja027967i

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lyver ER, Knight SA, Lesuisse E, Dancis A (2005) Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 280(20):19794–19807. doi:10.1074/jbc.M500397200

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci U S A 90(7):2754–2758

    Article  CAS  Google Scholar 

  • Zhou YB, Cao JB, Wan BB, Wang XR, Ding GH, Zhu H, Yang HM, Wang KS, Zhang X, Han ZG (2008) hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence. Mol Cell Biochem 317(1–2):61–68. doi:10.1007/s11010-008-9809-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the members of our group for the critical reading and review of the manuscript. We greatly acknowledge Department of Science and Technology for Swarnajayanthi fellowship (Grant ID: DST/SJF/LSA-01/2011–2012), DBT-IISc partnership programme (Grant ID: DBT/BF/PR/INS/2011-12/IISc), DST-FIST programme (Grant ID: SR/FST/LSII-544 023/2009), and UGC-CAS SAP-II programme (Grant ID: UGC LT. No. F. 5-2/2012. SAP-II) to P.D.S. We also acknowledge CSIR-India for SRF to P.P.S and K.B. We apologize to all colleagues and fellow researchers of the related domain whose original work could not be discussed or cited owing to length limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D’Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Saha, P.P., Vishwanathan, V., Bankapalli, K., D’Silva, P. (2017). Iron-Sulfur Protein Assembly in Human Cells. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology Vol. 174. Reviews of Physiology, Biochemistry and Pharmacology, vol 174. Springer, Cham. https://doi.org/10.1007/112_2017_5

Download citation

Publish with us

Policies and ethics