Skip to main content

Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 172))

Abstract

Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ag:

Antigen

AIEC:

Adherent-invasive Escherichia coli

APC:

Antigen-presenting cells

APOBEC3G:

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G

BAT3:

HLA-B-associated transcript 3

BCR:

B-cell receptor

CD:

Crohn’s disease

CMV:

Cytomegalovirus

CXCL11:

C-X-C motif chemokine 11

DC:

Dendritic cell

DT:

Diphtheria toxoid

EBV:

Epstein-Barr virus

EF1α1:

Elongation factor 1-alpha 1

EM:

Electron microscopy

ESCRT:

Endosomal sorting complexes required for transport

EV:

Extracellular vesicle

FACS:

Fluorescence activated cell sorting

FasL:

Fas ligand

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GPC1:

Glypican-1

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

HSC:

Heat-shock cognate

HSP:

Heat-shock protein

HTLV-1:

Human T-cell leukemia virus type 1

i.v.:

Intravenous

ICAM-1:

Intercellular adhesion molecule 1

IEC:

Intestinal epithelial cell

IFN:

Interferon

Ig:

Immunoglobulin

IL:

Interleukin

ILV:

Intraluminal vesicles

LAM:

Lipoarabinomannan

LF:

Lethal factor

LMP1:

Latent membrane protein 1

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

MFGE8:

Milk fat globule-EGF factor 8 protein

MHC:

Major histocompatibility complex molecules

miRNA:

MicroRNA

MVE:

Multivesicular endosome

MyD88:

Myeloid differentiation primary response protein 88

NEF:

Negative regulatory factor

NF-κB:

Nuclear factor-kappa B

NK:

Natural killer

NKG2D:

Natural killer group 2 member D receptor

OVA:

Ovalbumin

PA:

Protective antigen

PAMP:

Pathogen-associated molecular pattern

PBMC:

Peripheral blood mononuclear cells

PfPTP2:

Plasmodium falciparum tyrosine phosphatase 2

RANTES:

Regulated on activation, normal T cell expressed and secreted

SNARE:

Soluble N-ethylmaleimide-sensitive fusion attachment protein (SNAP) receptors

TAR:

Transactivating response

TGF-β:

Tumor growth factor beta

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

tRNA:

Transfer RNA

TSG101:

Tumor susceptibility gene 101

vtRNA:

Vault RNA

References

  • Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG (2013) Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep 5:986–996. doi:10.1016/j.celrep.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  • Admyre C, Grunewald J, Thyberg J, Gripenbäck S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583

    Article  CAS  PubMed  Google Scholar 

  • Admyre C, Johansson SM, Paulie S, Gabrielsson S (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 36:1772–1781. doi:10.1002/eji.200535615

    Article  CAS  PubMed  Google Scholar 

  • Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I (2004) Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 72:4127–4137. doi:10.1128/IAI.72.7.4127-4137.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. doi:10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  • Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305. doi:10.1016/S0140-6736(02)09552-1

    Article  CAS  PubMed  Google Scholar 

  • André F, Chaput N, Schartz NEC, Flament C, Aubert N, Bernard J, Lemonnier F, Raposo G, Escudier B, Hsu D-H, Tursz T, Amigorena S, Angevin E, Zitvogel L (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136. doi:10.4049/jimmunol.172.4.2126

    Article  PubMed  Google Scholar 

  • Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV (2013) Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One 8, e69827. doi:10.1371/journal.pone.0069827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289

    Article  CAS  PubMed  Google Scholar 

  • Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen L-AA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121. doi:10.1165/rcmb.2003-0238OC

    Article  CAS  PubMed  Google Scholar 

  • Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 1:403–418. doi:10.1038/ismej.2007.52

    Article  CAS  PubMed  Google Scholar 

  • Beauvillain C, Juste MO, Dion S, Pierre J, Dimier-Poisson I (2009) Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine 27:1750–1757. doi:10.1016/j.vaccine.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Schorey JS (2007) Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 282:25779–25789. doi:10.1074/jbc.M702277200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110:3234–3244. doi:10.1182/blood-2007-03-079152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887. doi:10.1093/intimm/dxh267

    Article  CAS  PubMed  Google Scholar 

  • Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques V, Balor S, Terce F, Lopez A, Salomé L, Joly E (2011) Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 286:34426–34439. doi:10.1074/jbc.M111.257444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrière J, Bretin A, Darfeuille-Michaud A, Barnich N, Nguyen HTT (2016) Exosomes released from cells infected with crohn’s disease-associated adherent-invasive Escherichia coli activate host innate immune responses and enhance bacterial intracellular replication. Inflamm Bowel Dis 22:516–528. doi:10.1097/MIB.0000000000000635

    Article  PubMed  Google Scholar 

  • Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI (2012) Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol 188:1942–1952. doi:10.4049/jimmunol.1102053

    Article  CAS  PubMed  Google Scholar 

  • Chen BJ, Lamb RA (2008) Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372:221–232. doi:10.1016/j.virol.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Schorey JS (2013) Exosomes carrying mycobacterial antigens can protect mice against an M. tuberculosis Infection. Eur J Immunol 43:3279–3290. doi:10.1002/eji.201343727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu Y-L, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353. doi:10.1146/annurev.immunol.26.021607.090350

    Article  CAS  PubMed  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638. doi:10.1242/jcs.02494

    Article  CAS  PubMed  Google Scholar 

  • Colino J, Snapper CM (2006) Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol Baltim Md 1950(177):3757–3762

    Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi:10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  • Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S (2006) Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55:1760–1767. doi:10.1136/gut.2005.078824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppieters K, Barral AM, Juedes A, Wolfe T, Rodrigo E, Théry C, Amigorena S, von Herrath MG (2009) No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. J Immunol 182:2213–2220. doi:10.4049/jimmunol.0802578

    Article  CAS  PubMed  Google Scholar 

  • Couper KN, Barnes T, Hafalla JCR, Combes V, Ryffel B, Secher T, Grau GE, Riley EM, de Souza JB (2010) Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog 6, e1000744. doi:10.1371/journal.ppat.1000744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai S, Zhou X, Wang B, Wang Q, Fu Y, Chen T, Wan T, Yu Y, Cao X (2006) Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8(+) CTL response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells. J Mol Med Berl Ger 84:1067–1076. doi:10.1007/s00109-006-0102-0

    Article  CAS  Google Scholar 

  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther J Am Soc Gene Ther 16:782–790. doi:10.1038/mt.2008.1

    Article  CAS  Google Scholar 

  • Damo M, Wilson DS, Simeoni E, Hubbell JA (2015) TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep 5:17622. doi:10.1038/srep17622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 115:1405–1413. doi:10.1016/S0016-5085(98)70019-8

    Article  CAS  PubMed  Google Scholar 

  • Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser A-L, Barnich N, Bringer M-A, Swidsinski A, Beaugerie L, Colombel J-F (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127:412–421. doi:10.1053/j.gastro.2004.04.061

    Article  PubMed  Google Scholar 

  • Davies BA, Lee JRE, Oestreich AJ, Katzmann DJ (2009) Membrane protein targeting to the MVB/lysosome. Chem Rev 109:1575–1586. doi:10.1021/cr800473s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho JV, de Castro RO, da Silva EZM, Silveira PP, da Silva-Januário ME, Arruda E, Jamur MC, Oliver C, Aguiar RS, daSilva LLP (2014) Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 9, e113691. doi:10.1371/journal.pone.0113691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111. doi:10.1016/j.brainres.2010.03.103

    Article  PubMed  CAS  Google Scholar 

  • Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    CAS  PubMed  Google Scholar 

  • Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J, Whitten-Bauer C, Wieland S, Chisari FV (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12:558–570. doi:10.1016/j.chom.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ, Bloemena E, Middeldorp JM (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol Baltim Md 1950(165):663–670

    Google Scholar 

  • Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq J-B, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10. doi:10.1186/1479-5876-3-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fader CM, Sánchez DG, Mestre MB, Colombo MI (2009) TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 1793:1901–1916. doi:10.1016/j.bbamcr.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5, e158. doi:10.1371/journal.pbio.0050158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648. doi:10.1016/j.mcn.2005.12.003

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva MR, Cabrera-Cabrera F, Cura das Neves RF, Souto-Padrón T, de Souza W, Cayota A (2014) Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. BioMed Res Int. doi:10.1155/2014/305239

    Google Scholar 

  • Giri PK, Schorey JS (2008) Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One 3:e2461. doi:10.1371/journal.pone.0002461

    Google Scholar 

  • Giri PK, Kruh NA, Dobos KM, Schorey JS (2010) Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics 10:3190–3202. doi:10.1002/pmic.200900840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigorov B, Attuil-Audenis V, Perugi F, Nedelec M, Watson S, Pique C, Darlix J-L, Conjeaud H, Muriaux D (2009) A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirology 6:28. doi:10.1186/1742-4690-6-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haney MJ, Zhao Y, Harrison EB, Mahajan V, Ahmed S, He Z, Suresh P, Hingtgen SD, Klyachko NL, Mosley RL, Gendelman HE, Kabanov AV, Batrakova EV (2013) Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One 8, e61852. doi:10.1371/journal.pone.0061852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson PI, Cashikar A (2012) Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28:337–362. doi:10.1146/annurev-cellbio-092910-154152

    Article  CAS  PubMed  Google Scholar 

  • Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  CAS  PubMed  Google Scholar 

  • Hassani K, Olivier M (2013) Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop Dis 7, e2185. doi:10.1371/journal.pntd.0002185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  • Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189:223–232. doi:10.1083/jcb.200911018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Drescher KM, Chen X-M (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56. doi:10.3389/fgene.2012.00056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Gong A-Y, Roth AL, Huang BQ, Ward HD, Zhu G, Larusso NF, Hanson ND, Chen X-M (2013) Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 9, e1003261. doi:10.1371/journal.ppat.1003261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487. doi:10.3109/10409238.2010.502516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Shen X, Sprent J (2003) Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci U S A 100:6670–6675. doi:10.1073/pnas.1131852100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M (2015) RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol 211:27–37. doi:10.1083/jcb.201504136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gómez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borràs FE, Puertas MC, Connor JH, Fernández-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741. doi:10.1182/blood-2008-05-158642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289:22284–22305. doi:10.1074/jbc.M114.549659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Sattentau QJ (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81:7873–7884. doi:10.1128/JVI.01845-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  CAS  PubMed  Google Scholar 

  • Khatua AK, Taylor HE, Hildreth JEK, Popik W (2009) Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 83:512–521. doi:10.1128/JVI.01658-08

    Article  CAS  PubMed  Google Scholar 

  • Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Moulec SLE, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P (2009) Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113:1957–1966. doi:10.1182/blood-2008-02-142596

    Article  CAS  PubMed  Google Scholar 

  • Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113:E968–977. doi:10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruh-Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, Davis JL, Dobos KM (2014) Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M tuberculosis infection using MRM-MS. PLoS One 9, e103811. doi:10.1371/journal.pone.0103811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai RC, Yeo RWY, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88. doi:10.1016/j.semcdb.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  • Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles J-P, Bonnerot C, Perret B, Record M (2004a) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572:11–14. doi:10.1016/j.febslet.2004.06.082

    Article  CAS  PubMed  Google Scholar 

  • Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux J-F, Kobayashi T, Salles J-P, Perret B, Bonnerot C, Record M (2004b) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380:161–171. doi:10.1042/BJ20031594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laulagnier K, Vincent-Schneider H, Hamdi S, Subra C, Lankar D, Record M (2005) Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol Dis 35:116–121. doi:10.1016/j.bcmd.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic Cph Den 11:110–122. doi:10.1111/j.1600-0854.2009.01006

    Article  CAS  Google Scholar 

  • Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, Wang B, Ye G, Xiao B, Guo J (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol J Int Soc Oncodev Biol Med 36:2007–2012. doi:10.1007/s13277-014-2807-y

    Article  CAS  Google Scholar 

  • Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X, Ferris M, Sullivan DE, Li L, Flemington EK (2016) Secreted oral epithelial cell membrane vesicles induce Epstein-Barr virus (EBV) reactivation in latently infected B-cells. J Virol. doi:10.1128/JVI.02830-15

    Google Scholar 

  • Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K, Sandvig K (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Longatti A, Boyd B, Chisari FV (2014) Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol 89:2956–2961. doi:10.1128/JVI.02721-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luketic L, Delanghe J, Sobol PT, Yang P, Frotten E, Mossman KL, Gauldie J, Bramson J, Wan Y (2007) Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol Baltim Md 1950(179):5024–5032

    Google Scholar 

  • Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L, Wikström P (2014) Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One 9. doi:10.1371/journal.pone.0108925

    Google Scholar 

  • Lv L-H, Wan Y-L, Lin Y, Zhang W, Yang M, Li G-L, Lin H-M, Shang C-Z, Chen Y-J, Min J (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885. doi:10.1074/jbc.M112.340588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel P-Y, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, Ghiran I, Toner M, Irimia D, Ivanov AR, Barteneva N, Marti M (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13:521–534. doi:10.1016/j.chom.2013.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127:80–93. doi:10.1053/j.gastro.2004.03.054

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina M, Aldeguer X, Lopez-Siles M, González-Huix F, López-Oliu C, Dahbi G, Blanco JE, Blanco J, Garcia-Gil LJ, Darfeuille-Michaud A (2009) Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm. Bowel Dis 15:872–882. doi:10.1002/ibd.20860

    Article  Google Scholar 

  • Marzesco A-M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858. doi:10.1242/jcs.02439

    Article  CAS  PubMed  Google Scholar 

  • Masciopinto F, Giovani C, Campagnoli S, Galli-Stampino L, Colombatto P, Brunetto M, Yen TSB, Houghton M, Pileri P, Abrignani S (2004) Association of hepatitis C virus envelope proteins with exosomes. Eur J Immunol 34:2834–2842. doi:10.1002/eji.200424887

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins. RNA Lipids Nucleic Acids Res 40:D1241–1244. doi:10.1093/nar/gkr828

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Fauré J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–534. doi:10.1126/science.1092425

    Article  CAS  PubMed  Google Scholar 

  • Meckes DG, Shair KHY, Marquitz AR, Kung C-P, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107:20370–20375. doi:10.1073/pnas.1014194107

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182. doi:10.1038/nature14581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf D, Isaacs AM (2010) The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem Soc Trans 38:1469–1473. doi:10.1042/BST0381469

    Article  CAS  PubMed  Google Scholar 

  • Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, Brown D, Russo LM (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78:191–199. doi:10.1038/ki.2010.106

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi:10.1038/ncomms1285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larregina AT, Morelli AE (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol Baltim Md 1950(180):3081–3090

    Google Scholar 

  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766. doi:10.1182/blood-2011-02-338004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Mineta Y, Aoyama Y, Sera T (2008) Efficient secretion of the herpes simplex virus tegument protein VP22 from living mammalian cells. Arch Virol 153:1191–1195. doi:10.1007/s00705-008-0094-x

    Article  CAS  PubMed  Google Scholar 

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu D-H, Le Pecq J-B, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9. doi:10.1186/1479-5876-3-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4, e1008347. doi:10.1080/2162402X.2015.1008347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL (2012) Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 1:1074–1083. doi:10.4161/onci.20897

    Article  PubMed  PubMed Central  Google Scholar 

  • Napoletano C, Rughetti A, Landi R, Pinto D, Bellati F, Rahimi H, Spinelli GP, Pauselli S, Sale P, Dolo V, De Lorenzo F, Tomao F, Benedetti-Panici P, Frati L, Nuti M (2009) Immunogenicity of allo-vesicle carrying ERBB2 tumor antigen for dendritic cell-based anti-tumor immunotherapy. Int J Immunopathol Pharmacol 22:647–658

    CAS  PubMed  Google Scholar 

  • Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033. doi:10.1074/jbc.M112.438895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Näslund TI, Gehrmann U, Gabrielsson S (2013a) Cancer immunotherapy with exosomes requires B-cell activation. Oncoimmunology 2, e24533. doi:10.4161/onci.24533

    Article  PubMed  PubMed Central  Google Scholar 

  • Näslund TI, Gehrmann U, Qazi KR, Karlsson MCI, Gabrielsson S (2013b) Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol Baltim Md 1950(190):2712–2719. doi:10.4049/jimmunol.1203082

    Google Scholar 

  • Neut C, Bulois P, Desreumaux P, Membré J-M, Lederman E, Gambiez L, Cortot A, Quandalle P, van Kruiningen H, Colombel J-F (2002) Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn’s disease. Am J Gastroenterol 97:939–946. doi:10.1111/j.1572-0241.2002.05613.x

    Article  PubMed  Google Scholar 

  • Neves RFC, Fernandes ACS, Meyer-Fernandes JR, Souto-Padrón T (2014) Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 113:2961–2972. doi:10.1007/s00436-014-3958-x

    Article  PubMed  Google Scholar 

  • Nolte-’t Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM (2009) Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113:1977–1981. doi:10.1182/blood-2008-08-174094

    Article  PubMed  CAS  Google Scholar 

  • Nolte-’t Hoen ENM, Buermans HPJ, Waasdorp M, Stoorvogel W, Wauben MHM, ’t Hoen PAC (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40:9272–9285. doi:10.1093/nar/gks658

    Google Scholar 

  • Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP (2009) Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. Am J Pathol 175:696–705. doi:10.2353/ajpath.2009.080716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther J Am Soc Gene Ther 21:185–191. doi:10.1038/mt.2012.180

    Article  CAS  Google Scholar 

  • Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L (2010) Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 78:1601–1609. doi:10.1128/IAI.01171-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30. doi:10.1038/ncb2000

    Article  CAS  PubMed  Google Scholar 

  • Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5, e8577. doi:10.1371/journal.pone.0008577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  CAS  PubMed  Google Scholar 

  • Panepinto J, Komperda K, Frases S, Park Y-D, Djordjevic JT, Casadevall A, Williamson PR (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 71:1165–1176. doi:10.1111/j.1365-2958.2008.06588.x

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333. doi:10.1073/pnas.0914843107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373. doi:10.1073/pnas.0403453101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quah BJC, O’Neill HC (2007) Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol 82:1070–1082. doi:10.1189/jlb.0507277

    Article  CAS  PubMed  Google Scholar 

  • Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46. doi:10.3816/CLC.2009.n.006

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Stenmark H (2002) Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct Funct 27:403–408

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, Willemsen R, Demmers JAA, Stalin Raj V, Jenster G, Kwekkeboom J, Tilanus HW, Haagmans BL, Baumert TF, van der Laan LJW (2013) Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 110:13109–13113. doi:10.1073/pnas.1221899110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645. doi:10.1091/mbc.8.12.2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120. doi:10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  • Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:1120–1133. doi:10.1016/j.cell.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Sitaraman SV, Babbin BA, Gerner-Smidt P, Ribot EM, Garrett N, Alpern JA, Akyildiz A, Theiss AL, Nusrat A, Klapproth J-MA (2007) Invasive Escherichia coli are a feature of Crohn’s disease. Lab Investig J Tech Methods Pathol 87:1042–1054. doi:10.1038/labinvest.3700661

    Article  CAS  Google Scholar 

  • Sato K, Aoki J, Misawa N, Daikoku E, Sano K, Tanaka Y, Koyanagi Y (2008) Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J Virol 82:1021–1033. doi:10.1128/JVI.01044-07

    Article  CAS  PubMed  Google Scholar 

  • Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115:2505–2515

    CAS  PubMed  Google Scholar 

  • Schnitzer JK, Berzel S, Fajardo-Moser M, Remer KA, Moll H (2010) Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine 28:5785–5793. doi:10.1016/j.vaccine.2010.06.077

    Article  CAS  PubMed  Google Scholar 

  • Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, Amigorena S, Théry C (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106:216–223. doi:10.1182/blood-2005-01-0220

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK, Reiner NE (2010a) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185:5011–5022. doi:10.4049/jimmunol.1000541

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE (2010a). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci 123:842–852. doi:10.1242/jcs.056465

    Google Scholar 

  • Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, Kufer TA, Engert A, Pogge von Strandmann E (2008) Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 3, e3377. doi:10.1371/journal.pone.0003377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS (2011) Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One 6, e18564. doi:10.1371/journal.pone.0018564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PP, Smith VL, Karakousis PC, Schorey JS (2012) Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol Baltim Md 1950(189):777–785. doi:10.4049/jimmunol.1103638

    Google Scholar 

  • Skokos D, Le Panse S, Villa I, Rousselle JC, Peronet R, David B, Namane A, Mécheri S (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol Baltim Md 1950(166):868–876

    Google Scholar 

  • Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mécheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045. doi:10.4049/jimmunol.170.6.3037

    Article  CAS  PubMed  Google Scholar 

  • Song J, Chen X, Wang M, Xing Y, Zheng Z, Hu S (2014) Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Sci Rep 4:7583. doi:10.1038/srep07583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotillo J, Pearson M, Potriquet J, Becker L, Pickering D, Mulvenna J, Loukas A (2015) Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates. Int J Parasitol. doi:10.1016/j.ijpara.2015.09.002

    PubMed Central  Google Scholar 

  • Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL (1991) Late endosomes derive from early endosomes by maturation. Cell 65:417–427

    Article  CAS  PubMed  Google Scholar 

  • Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic Cph Den 10:925–937. doi:10.1111/j.1600-0854.2009.00920.x

    Article  CAS  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang H-G (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther J Am Soc Gene Ther 18:1606–1614. doi:10.1038/mt.2010.105

    Article  CAS  Google Scholar 

  • Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54. doi:10.1053/gast.2002.30294

    Article  PubMed  Google Scholar 

  • Szajnik M, Derbis M, Lach M, Patalas P, Michalak M, Drzewiecka H, Szpurek D, Nowakowski A, Spaczynski M, Baranowski W, Whiteside TL (2013) Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet Sunnyvale Calif Suppl 4:3. doi:10.4172/2161-0932.S4-003

    Google Scholar 

  • Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima K, Hoshino T, Sano K, Ueno Y, Shimosegawa T, Sugamura K (2010) Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 399:384–390. doi:10.1016/j.bbrc.2010.07.083

    Article  CAS  PubMed  Google Scholar 

  • Tan SS, Yin Y, Lee T, Lai RC, Yeo RWY, Zhang B, Choo A, Lim SK (2013) Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. J. Extracell Vesicles 2. doi:10.3402/jev.v2i0.22614

    Google Scholar 

  • Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. doi:10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  • Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S (2002) Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat Immunol 3:1156–1162. doi:10.1038/ni854

    Article  PubMed  CAS  Google Scholar 

  • Théry C, Amigorena S., Raposo, G., Clayton, A., (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Editor. Board Juan Bonifacino Al Chapter 3, Unit 3.22. doi:10.1002/0471143030.cb0322s30

    Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593. doi:10.1038/nri2567

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. doi:10.1016/j.biomaterials.2013.11.083

    Article  CAS  PubMed  Google Scholar 

  • Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C, Endo I (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10, e0130472. doi:10.1371/journal.pone.0130472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247. doi:10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  • Usami Y, Popov S, Popova E, Inoue M, Weissenhorn WG, Göttlinger H (2009) The ESCRT pathway and HIV-1 budding. Biochem Soc Trans. 37:181–184. doi:10.1042/BST0370181

    Google Scholar 

  • Utsugi-Kobukai S, Fujimaki H, Hotta C, Nakazawa M, Minami M (2003) MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett 89:125–131. doi:10.1016/S0165-2478(03)00128-7

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  • van den Boorn JG, Daßler J, Coch C, Schlee M, Hartmann G (2013) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65:331–335. doi:10.1016/j.addr.2012.06.011

    Article  PubMed  CAS  Google Scholar 

  • Van Giau V, An SSA (2016) Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J Neurol Sci 360:141–152. doi:10.1016/j.jns.2015.12.005

    Article  PubMed  CAS  Google Scholar 

  • van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21:708–721. doi:10.1016/j.devcel.2011.08.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verweij FJ, van Eijndhoven MAJ, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E, Kieff E, Geerts D, van der Kant R, Neefjes J, Middeldorp JM, Pegtel DM (2011) LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-kB activation. EMBO J 30:2115–2129. doi:10.1038/emboj.2011.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaud S, Terme M, Flament C, Taieb J, André F, Novault S, Escudier B, Robert C, Caillat-Zucman S, Tursz T, Zitvogel L, Chaput N (2009) Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4, e4942. doi:10.1371/journal.pone.0004942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N (2010) Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res 70:1281–1285. doi:10.1158/0008-5472.CAN-09-3276

    Article  CAS  PubMed  Google Scholar 

  • Wakim LM, Bevan MJ (2011) Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471:629–632. doi:10.1038/nature09863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C, Xie P, Pan Y, Tan Y, Tang L (2014) Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect Inst Pasteur 16:283–291. doi:10.1016/j.micinf.2013.12.001

    Article  CAS  Google Scholar 

  • Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303. doi:10.1038/85438

    Article  CAS  PubMed  Google Scholar 

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177. doi:10.1038/nature07836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodburn JR (1999) The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 82:241–250

    Article  CAS  PubMed  Google Scholar 

  • Woodman PG, Futter CE (2008) Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol 20:408–414. doi:10.1016/j.ceb.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wubbolts R, Leckie RS, Veenhuizen PTM, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot J-W, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972. doi:10.1074/jbc.M207550200

    Article  CAS  PubMed  Google Scholar 

  • Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NHH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E-M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen ENM, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MHM, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yang C, Chalasani G, Ng Y-H, Robbins PD (2012) Exosomes released from Mycoplasma infected tumor cells activate inhibitory B cells. PLoS One 7, e36138. doi:10.1371/journal.pone.0036138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014. doi:10.1007/s11095-014-1593-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yewdell JW, Dolan BP (2011) Cross–dressers turn on T cells. Nature 471:581–582. doi:10.1038/471581a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang C-Y (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144. doi:10.1016/j.molcel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Basher F, Wu JD (2015) NKG2D ligands in tumor immunity: two sides of a coin. Front Immunol 6. doi:10.3389/fimmu.2015.00097

    Google Scholar 

  • Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV (2014) GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson’s disease mouse model. PLoS One 9, e106867. doi:10.1371/journal.pone.0106867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Z, Yang Y, Zeng Y, He M (2015) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. doi:10.1039/c5lc01117e

    Google Scholar 

  • Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen R-F, Knepper MA, Star RA (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857. doi:10.1038/sj.ki.5001874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zhu W, Li H, Wen W, Cheng W, Wang F, Wu Y, Qi L, Fan Y, Chen Y, Ding Y, Xu J, Qian J, Huang Z, Wang T, Zhu D, Shu Y, Liu P (2015) Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis. Sci Rep 5:11251. doi:10.1038/srep11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang H-G (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther 19:1769–1779. doi:10.1038/mt.2011.164

    Article  CAS  Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    Article  CAS  PubMed  Google Scholar 

  • Zöller M (2016) Exosomes in cancer disease. Methods Mol Biol Clifton NJ 1381:111–149. doi:10.1007/978-1-4939-3204-7_7

    Article  Google Scholar 

  • Zylbersztejn K, Galli T (2011) Vesicular traffic in cell navigation. FEBS J 278:4497–4505. doi:10.1111/j.1742-4658.2011.08168.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministère de la Recherche et de la Technologie, Inserm (UMR1071), INRA (USC 2018), the European Union FP7 People Marie Curie International Incoming Fellowship (to H.N.), and grants from the Association F. Aupetit (AFA), Région Auvergne (“Nouveau chercheur” grant to H.N.) and Agence Nationale de la Recherche (ANR “Jeune Chercheuse Jeune Chercheur” Nutribiote to N.B).

No competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Thi Thu Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carrière, J., Barnich, N., Nguyen, H.T.T. (2016). Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172. Reviews of Physiology, Biochemistry and Pharmacology, vol 172. Springer, Cham. https://doi.org/10.1007/112_2016_7

Download citation

Publish with us

Policies and ethics