Advertisement

The Zebrafish Heart as a Model of Mammalian Cardiac Function

  • Christine E. Genge
  • Eric Lin
  • Ling Lee
  • XiaoYe Sheng
  • Kaveh Rayani
  • Marvin Gunawan
  • Charles M. Stevens
  • Alison Yueh Li
  • Sanam Shafaat Talab
  • Thomas W. Claydon
  • Leif Hove-Madsen
  • Glen F. TibbitsEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 171)

Abstract

Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.

Keywords

Cardiac electrophysiology Echocardiography Electrophysiology Excitation-contraction coupling Optical mapping Phylogeny 

References

  1. Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE (2016) A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J Neurosci 36(8):2458–2472PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abi-Gerges N, Holkham H, Jones EM, Pollard CE, Valentin JP, Robertson GA (2011) hERG subunit composition determines differential drug sensitivity. Br J Pharmacol 164(2b):419–432PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alday A, Alonso H, Gallego M, Urrutia J, Letamendia A, Callol C, Casis O (2014) Ionic channels underlying the ventricular action potential in zebrafish embryo. Pharmacol Res 84:26–31PubMedCrossRefGoogle Scholar
  4. Alderman SL, Klaiman JM, Deck CA, Gillis TE (2012) Effect of cold acclimation on troponin I isoform expression in striated muscle of rainbow trout. Am J Physiol Regul Integr Comp Physiol 303(2):R168–R176PubMedCrossRefGoogle Scholar
  5. Allen DG, Kurihara S (1979) Calcium transients at different muscle lengths in rat ventricular muscle [proceedings]. J Physiol 292:68P–69PPubMedGoogle Scholar
  6. Altringham JD, Johnston IA (1982) The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles. J Physiol 333:421–449PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69(5):1226–1233PubMedCrossRefGoogle Scholar
  8. Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M, Chi NC (2007) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104(27):11316–11321PubMedPubMedCentralCrossRefGoogle Scholar
  9. Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech 7(7):763–767PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6(1):69–77PubMedPubMedCentralCrossRefGoogle Scholar
  12. Birkedal R, Shiels HA (2007) High [Na+]i in cardiomyocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 293(2):R861–R866PubMedCrossRefGoogle Scholar
  13. Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL (2003) Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J Physiol 546(Pt 1):19–31PubMedCrossRefGoogle Scholar
  14. Bovo E, Dvornikov AV, Mazurek SR, de Tombe PP, Zima AV (2013) Mechanisms of Ca2+ handling in zebrafish ventricular myocytes. Pflugers Arch 465(12):1775–1784PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374(1):143–146PubMedPubMedCentralCrossRefGoogle Scholar
  16. Broussard GJ, Liang R, Tian L (2014) Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 7:97PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chaudhari GH, Chennubhotla KS, Chatti K, Kulkarni P (2013) Optimization of the adult zebrafish ECG method for assessment of drug-induced QTc prolongation. J Pharmacol Toxicol Methods 67(2):115–120PubMedCrossRefGoogle Scholar
  18. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300PubMedPubMedCentralCrossRefGoogle Scholar
  19. Choi BR, Salama G (2000) Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 529(Pt 1):171–188PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chopra SS, Stroud DM, Watanabe H, Bennett JS, Burns CG, Wells KS, Yang T, Zhong TP, Roden DM (2010) Voltage-gated sodium channels are required for heart development in zebrafish. Circ Res 106(8):1342–50PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cingolani HE, Ennis IL, Aiello EA, Perez NG (2011) Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch 462(1):29–38PubMedCrossRefGoogle Scholar
  22. Cohen AE (2016) Optogenetics: turning the microscope on its head. Biophys J 110(5):997–1003PubMedCrossRefGoogle Scholar
  23. Collins JE, White S, Searle SM, Stemple DL (2012) Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 22(10):2067–2078PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cotter PA, Han AJ, Everson JJ, Rodnick KJ (2008) Cardiac hemodynamics of the rainbow trout (Oncorhynchus mykiss) using simultaneous Doppler echocardiography and electrocardiography. J Exp Zool A Ecol Genet Physiol 309(5):243–254PubMedCrossRefGoogle Scholar
  25. Coucelo J, Joaquim N, Coucelo J (2000) Calculation of volumes and systolic indices of heart ventricle from Halobatrachus didactylus: echocardiographic noninvasive method. J Exp Zool 286(6):585–595PubMedCrossRefGoogle Scholar
  26. Dahme T, Katus HA, Rottbauer W (2009) Fishing for the genetic basis of cardiovascular disease. Dis Model Mech 2(1-2):18–22PubMedPubMedCentralCrossRefGoogle Scholar
  27. de Tombe PP, ter Keurs HE (1991) Sarcomere dynamics in cat cardiac trabeculae. Circ Res 68(2):588–596PubMedCrossRefGoogle Scholar
  28. de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48(5):851–858PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dhillon SS, Doro E, Magyary I, Egginton S, Sik A, Muller F (2013) Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One 8(4), e60552PubMedPubMedCentralCrossRefGoogle Scholar
  30. Di Maio A, Block BA (2008) Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 334(1):121–134PubMedCrossRefGoogle Scholar
  31. Ding W, Lin E, Ribeiro A, Sarunic MV, Tibbits GF, Beg MF (2014) Automatic cycle averaging for denoising approximately periodic spatiotemporal signals. IEEE Trans Med Imaging 33(8):1749–1759PubMedCrossRefGoogle Scholar
  32. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  33. Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, de Tombe PP (2014) Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. J Physiol 592(9):1949–1956PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ebert AM, Hume GL, Warren KS, Cook NP, Burns CG, Mohideen MA, Siegal G, Yelon D, Fishman MC, Garrity DM (2005) Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc Natl Acad Sci U S A 102(49):17705–17710PubMedPubMedCentralCrossRefGoogle Scholar
  35. Edman KA (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208(Pt 10):1905–1913PubMedCrossRefGoogle Scholar
  36. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95(1):21–33PubMedCrossRefGoogle Scholar
  37. Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Academic, San DiegoGoogle Scholar
  38. Fast VG (2005) Simultaneous optical imaging of membrane potential and intracellular calcium. J Electrocardiol 38(4 Suppl):107–112PubMedCrossRefGoogle Scholar
  39. Fentzke RC, Buck SH, Patel JR, Lin H, Wolska BM, Stojanovic MO, Martin AF, Solaro RJ, Moss RL, Leiden JM (1999) Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart. J Physiol 517(Pt 1):143–157PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95(19):11476–11481PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fu CY, Lee HC, Tsai HJ (2009) The molecular structures and expression patterns of zebrafish troponin I genes. Gene Expr Patterns 9(5):348–356PubMedCrossRefGoogle Scholar
  42. Gagne SM, Tsuda S, Li MX, Smillie LB, Sykes BD (1995) Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol 2(9):784–789PubMedCrossRefGoogle Scholar
  43. Gemberling M, Karra R, Dickson AL, Poss KD (2015) Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife 4Google Scholar
  44. Genge CE, Davidson WS, Tibbits GF (2013) Adult teleost heart expresses two distinct troponin C paralogs: cardiac TnC and a novel and teleost-specific ssTnC in a chamber- and temperature-dependent manner. Physiol Genomics 45(18):866–875PubMedCrossRefGoogle Scholar
  45. Genge CE, Stevens CM, Davidson WS, Singh G, Peter Tieleman D, Tibbits GF (2016) Functional divergence in teleost cardiac troponin paralogs guides variation in the interaction of TnI switch region with TnC. Genome Biol Evol 8(4):994–1011PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gerger CJ, Thomas JK, Janz DM, Weber LP (2015) Acute effects of beta-naphthoflavone on cardiorespiratory function and metabolism in adult zebrafish (Danio rerio). Fish Physiol Biochem 41(1):289–298PubMedCrossRefGoogle Scholar
  47. Gillis TE, Tibbits GF (2002) Beating the cold: the functional evolution of troponin C in teleost fish. Comp Biochem Physiol A Mol Integr Physiol 132(4):763–772PubMedCrossRefGoogle Scholar
  48. Gillis TE, Liang B, Chung F, Tibbits GF (2005) Increasing mammalian cardiomyocyte contractility with residues identified in trout troponin C. Physiol Genomics 22(1):1–7PubMedCrossRefGoogle Scholar
  49. Gillis TE, Marshall CR, Tibbits GF (2007) Functional and evolutionary relationships of troponin C. Physiol Genomics 32(1):16–27PubMedCrossRefGoogle Scholar
  50. Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413PubMedGoogle Scholar
  51. Granzier HL, Akster HA, Ter Keurs HE (1991) Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol 260(5 Pt 1):C1060–C1070PubMedGoogle Scholar
  52. Guharoy M, Chakrabarti P (2005) Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci U S A 102(43):15447–15452PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hanft LM, McDonald KS (2010) Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres. J Physiol 588(Pt 15):2891–2903PubMedPubMedCentralCrossRefGoogle Scholar
  54. Harrison SM, Bers DM (1989) Influence of temperature on the calcium sensitivity of the myofilaments of skinned ventricular muscle from the rabbit. J Gen Physiol 93(3):411–428PubMedCrossRefGoogle Scholar
  55. Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M (2015) Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Arch 467(12):2437–2446PubMedCrossRefGoogle Scholar
  56. Haverinen J, Vornanen M (2007) Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 292(2):R1023–R1032PubMedCrossRefGoogle Scholar
  57. Hein SJ, Lehmann LH, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D (2015) Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 10(4), e0122665PubMedPubMedCentralCrossRefGoogle Scholar
  58. Herron TJ, Lee P, Jalife J (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110(4):609–623PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ho YL, Shau YW, Tsai HJ, Lin LC, Huang PJ, Hsieh FJ (2002) Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. Ultrasound Med Biol 28(9):1137–1143PubMedCrossRefGoogle Scholar
  60. Hou JH, Kralj JM, Douglass AD, Engert F, Cohen AE (2014) Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front Physiol 5:344PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hove-Madsen L, Llach A, Tort L (2000) Na(+)/Ca(2+)-exchange activity regulates contraction and SR Ca(2+) content in rainbow trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 279(5):R1856–R1864PubMedGoogle Scholar
  62. Hove-Madsen L, Llach A, Tibbits GF, Tort L (2003) Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 284(5):R1330–R1339PubMedCrossRefGoogle Scholar
  63. Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Knight J, Mani P, Martin R, Moxon SA, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Schaper K, Shao X, Singer A, Sprunger B, Van Slyke CE, Westerfield M (2013) ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res 41(Database issue):D854–D860PubMedCrossRefGoogle Scholar
  64. Hu N, Yost HJ, Clark EB (2001) Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec 264(1):1–12PubMedCrossRefGoogle Scholar
  65. Huang QQ, Jin JP (1999) Preserved close linkage between the genes encoding troponin I and troponin T, reflecting an evolution of adapter proteins coupling the Ca(2+) signaling of contractility. J Mol Evol 49(6):780–788PubMedCrossRefGoogle Scholar
  66. Huang J, Hove-Madsen L, Tibbits GF (2005) Na+/Ca2+ exchange activity in neonatal rabbit ventricular myocytes. Am J Physiol Cell Physiol 288(1):C195–C203PubMedGoogle Scholar
  67. Huang WC, Hsieh YS, Chen IH, Wang CH, Chang HW, Yang CC, Ku TH, Yeh SR, Chuang YJ (2010) Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 7(3):297–304PubMedCrossRefGoogle Scholar
  68. Huang CC, Su TH, Shih CC (2015) High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration. Zebrafish 12(1):48–57PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229PubMedPubMedCentralCrossRefGoogle Scholar
  70. Iorga B, Blaudeck N, Solzin J, Neulen A, Stehle I, Lopez Davila AJ, Pfitzer G, Stehle R (2008) Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. Cardiovasc Res 77(4):676–686PubMedCrossRefGoogle Scholar
  71. Iorga B, Neacsu CD, Neiss WF, Wagener R, Paulsson M, Stehle R, Pfitzer G (2011) Micromechanical function of myofibrils isolated from skeletal and cardiac muscles of the zebrafish. J Gen Physiol 137(3):255–270PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jaimes R 3rd, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW (2016) A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol 310(11):H1388–H1401PubMedCrossRefGoogle Scholar
  73. Janssen PM, de Tombe PP (1997) Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol 272(4 Pt 2):H1892–H1897PubMedGoogle Scholar
  74. Jin JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18(2):93–124PubMedCrossRefGoogle Scholar
  75. Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785PubMedPubMedCentralCrossRefGoogle Scholar
  76. Johnson AC, Turko AJ, Klaiman JM, Johnston EF, Gillis TE (2014) Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. J Exp Biol 217(Pt 11):1868–1875PubMedCrossRefGoogle Scholar
  77. Kane DA, Maischein HM, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nusslein-Volhard C (1996) The zebrafish early arrest mutants. Development 123:57–66PubMedGoogle Scholar
  78. Karasinski J, Sokalski A, Kilarski W (2001) Correlation of myofibrillar ATPase activity and myosin heavy chain content in ventricular and atrial myocardium of fish heart. Folia Histochem Cytobiol 39(1):23–28PubMedGoogle Scholar
  79. Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58(6):755–768PubMedCrossRefGoogle Scholar
  80. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32(1):97–108PubMedCrossRefGoogle Scholar
  81. Langenbacher AD, Dong Y, Shu X, Choi J, Nicoll DA, Goldhaber JI, Philipson KD, Chen JN (2005) Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl Acad Sci U S A 102(49):17699–17704PubMedPubMedCentralCrossRefGoogle Scholar
  82. Langheinrich U, Vacun G, Wagner T (2003) Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol 193(3):370–382PubMedCrossRefGoogle Scholar
  83. Laughner JI, Ng FS, Sulkin MS, Arthur RM, Efimov IR (2012) Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Physiol Heart Circ Physiol 303(7):H753–H765PubMedPubMedCentralCrossRefGoogle Scholar
  84. Law SH, Sargent TD (2014) The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS One 9(6), e100268PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lee J, Cao H, Kang BJ, Jen N, Yu F, Lee CA, Fei P, Park J, Bohlool S, Lash-Rosenberg L, Shung KK, Hsiai TK (2014) Hemodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish 11(5):447–454PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lee L, Genge CE, Cua M, Sheng X, Rayani K, Beg MF, Sarunic MV, Tibbits GF (2016) Functional assessment of cardiac responses of adult zebrafish (Danio rerio) to acute and chronic temperature change using high-resolution echocardiography. PLoS One 11(1), e0145163PubMedPubMedCentralCrossRefGoogle Scholar
  87. Leong IU, Skinner JR, Shelling AN, Love DR (2010a) Identification and expression analysis of kcnh2 genes in the zebrafish. Biochem Biophys Res Commun 396(4):817–824PubMedCrossRefGoogle Scholar
  88. Leong IU, Skinner JR, Shelling AN, Love DR (2010b) Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf) 199(3):257–276Google Scholar
  89. Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38(26):8289–8298PubMedCrossRefGoogle Scholar
  90. Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF (2014) Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 306(11):R823–R836PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lin E, Craig C, Lamothe M, Sarunic MV, Beg MF, Tibbits GF (2015) Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation. Am J Physiol Regul Integr Comp Physiol 308(9):R755–R768PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lionne C, Iorga B, Candau R, Travers F (2003) Why choose myofibrils to study muscle myosin ATPase? J Muscle Res Cell Motil 24(2-3):139–148PubMedCrossRefGoogle Scholar
  93. Little AG, Seebacher F (2013) Thyroid hormone regulates cardiac performance during cold acclimation in Zebrafish (Danio rerio). J Exp BiolGoogle Scholar
  94. Liu B, Wohlfart B, Johansson BW (1990) Effects of low temperature on contraction in papillary muscles from rabbit, rat, and hedgehog. Cryobiology 27(5):539–546PubMedCrossRefGoogle Scholar
  95. Liu TY, Lee PY, Huang CC, Sun L, Shung KK (2013) A study of the adult zebrafish ventricular function by retrospective Doppler-gated ultrahigh-frame-rate echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1827–1837PubMedPubMedCentralCrossRefGoogle Scholar
  96. Llach A, Molina CE, Alvarez-Lacalle E, Tort L, Benitez R, Hove-Madsen L (2011) Detection, properties, and frequency of local calcium release from the sarcoplasmic reticulum in teleost cardiomyocytes. PLoS One 6(8), e23708PubMedPubMedCentralCrossRefGoogle Scholar
  97. Looger LL (2012) Running in reverse: rhodopsins sense voltage. Nat Methods 9(1):43–44CrossRefGoogle Scholar
  98. Lutcke H, Murayama M, Hahn T, Margolis DJ, Astori S, Zum Alten Borgloh SM, Gobel W, Yang Y, Tang W, Kugler S, Sprengel R, Nagai T, Miyawaki A, Larkum ME, Helmchen F, Hasan MT (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4:9PubMedPubMedCentralGoogle Scholar
  99. Mateja RD, de Tombe PP (2012) Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. Biophys J 103(1):L13–L15PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mesirca P, Torrente AG, Mangoni ME (2014) T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch 466(4):791–799PubMedCrossRefGoogle Scholar
  101. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11(6):699–704PubMedCrossRefGoogle Scholar
  102. Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107(10):1355–1358PubMedCrossRefGoogle Scholar
  103. Milan DJ, Jones IL, Ellinor PT, MacRae CA (2006) In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291(1):H269–H273PubMedCrossRefGoogle Scholar
  104. Mironov SF, Vetter FJ, Pertsov AM (2006) Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol 291(1):H327–H335PubMedCrossRefGoogle Scholar
  105. Mittelstadt SW, Hemenway CL, Craig MP, Hove JR (2008) Evaluation of zebrafish embryos as a model for assessing inhibition of hERG. J Pharmacol Toxicol Methods 57(2):100–105PubMedCrossRefGoogle Scholar
  106. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A, Echocardiography AS (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193PubMedCrossRefGoogle Scholar
  107. Nair N, Gerger C, Hatef A, Weber LP, Unniappan S (2016) Ultrasonography reveals in vivo dose-dependent inhibition of end systolic and diastolic volumes, heart rate and cardiac output by nesfatin-1 in zebrafish. Gen Comp EndocrinolGoogle Scholar
  108. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220PubMedCrossRefGoogle Scholar
  109. Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48(1):161–171PubMedCrossRefGoogle Scholar
  110. Novak AE, Jost MC, Lu Y, Taylor AD, Zakon HH, Ribera AB (2006) Gene duplications and evolution of vertebrate voltage-gated sodium channels. J Mol Evol 63(2):208–221PubMedCrossRefGoogle Scholar
  111. Nygren A, Kondo C, Clark RB, Giles WR (2003) Voltage-sensitive dye mapping in Langendorff-perfused rat hearts. Am J Physiol Heart Circ Physiol 284(3):H892–H902PubMedCrossRefGoogle Scholar
  112. Ohno S (1993) Patterns in genome evolution. Curr Opin Genet Dev 3(6):911–914PubMedCrossRefGoogle Scholar
  113. Ohte N, Miyoshi I, Sane DC, Little WC (2009) Zebrafish with antisense-knockdown of cardiac troponin C as a model of hereditary dilated cardiomyopathy. Circulation 73(9):1595–1596CrossRefGoogle Scholar
  114. Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. Elife 3, e02030PubMedPubMedCentralCrossRefGoogle Scholar
  115. Palpant NJ, Houang EM, Delport W, Hastings KE, Onufriev AV, Sham YY, Metzger JM (2010) Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics 42(2):287–299PubMedPubMedCentralCrossRefGoogle Scholar
  116. Parmacek MS, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47(3):159–176PubMedCrossRefGoogle Scholar
  117. Patrick SM, Hoskins AC, Kentish JC, White E, Shiels HA, Cazorla O (2010) Enhanced length-dependent Ca2+ activation in fish cardiomyocytes permits a large operating range of sarcomere lengths. J Mol Cell Cardiol 48(5):917–924PubMedCrossRefGoogle Scholar
  118. Patrick SM, White E, Shiels HA (2011) Rainbow trout myocardium does not exhibit a slow inotropic response to stretch. J Exp Biol 214(Pt 7):1118–1122PubMedCrossRefGoogle Scholar
  119. Poggesi C, Tesi C, Stehle R (2005) Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Arch 449(6):505–517PubMedCrossRefGoogle Scholar
  120. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190PubMedCrossRefGoogle Scholar
  121. Pugsley MK, Curtis MJ, Hayes ES (2015) Biophysics and molecular biology of cardiac ion channels for the safety pharmacologist. Handb Exp Pharmacol 229:149–203PubMedCrossRefGoogle Scholar
  122. Qian X, Ba Y, Zhuang Q, Zhong G (2014) RNA-Seq technology and its application in fish transcriptomics. OMICS 18(2):98–110PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GECIs. Front Mol Neurosci 7:88PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rottbauer W, Baker K, Wo ZG, Mohideen MAPK, Cantiello HF, Fishman MC (2001) Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha 1 subunit. Dev Cell 1(2):265–275PubMedCrossRefGoogle Scholar
  125. Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, Burns CG, Katus HA, Fishman MC (2006) Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99(3):323–331PubMedCrossRefGoogle Scholar
  126. Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94(2):609–653PubMedCrossRefGoogle Scholar
  127. Scholz EP, Niemer N, Hassel D, Zitron E, Burgers HF, Bloehs R, Seyler C, Scherer D, Thomas D, Kathofer S, Katus HA, Rottbauer WA, Karle CA (2009) Biophysical properties of zebrafish ether-a-go-go related gene potassium channels. Biochem Biophys Res Commun 381(2):159–164PubMedCrossRefGoogle Scholar
  128. Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP (2003) Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284(4):H1152–H1160PubMedCrossRefGoogle Scholar
  129. Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100(2):238–245PubMedCrossRefGoogle Scholar
  130. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DYR (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31(1):106–110PubMedCrossRefGoogle Scholar
  131. Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB (2015) Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods 12(6):535–540PubMedPubMedCentralCrossRefGoogle Scholar
  132. Shattock MJ, Bers DM (1987) Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: implications for excitation-contraction coupling. Circ Res 61(6):761–771PubMedCrossRefGoogle Scholar
  133. Shen Y, Lai T, Campbell RE (2015) Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics 2(3):031203PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shiels HA, Calaghan SC, White E (2006) The cellular basis for enhanced volume-modulated cardiac output in fish hearts. J Gen Physiol 128(1):37–44PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X (2015) Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circ Cardiovasc Genet 8(2):261–269PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sidhu R, Anttila K, Farrell AP (2014) Upper thermal tolerance of closely related Danio species. J Fish Biol 84(4):982–995PubMedCrossRefGoogle Scholar
  137. Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T (2004) gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 24(17):4213–4223PubMedCrossRefGoogle Scholar
  138. Singh AR, Sivadas A, Sabharwal A, Vellarikal SK, Jayarajan R, Verma A, Kapoor S, Joshi A, Scaria V, Sivasubbu S (2016) Chamber specific gene expression landscape of the zebrafish heart. PLoS One 11(1), e0147823PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sogah VM, Serluca FC, Fishman MC, Yelon DL, Macrae CA, Mably JD (2010) Distinct troponin C isoform requirements in cardiac and skeletal muscle. Dev Dyn 239(11):3115–3123PubMedPubMedCentralCrossRefGoogle Scholar
  140. Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  141. Somero GN, Hochachka PW (1969) Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature 223(5202):194–195PubMedCrossRefGoogle Scholar
  142. Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13–34PubMedCrossRefGoogle Scholar
  143. Steffen LS, Guyon JR, Vogel ED, Beltre R, Pusack TJ, Zhou Y, Zon LI, Kunkel LM (2007) Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics 8:79PubMedPubMedCentralCrossRefGoogle Scholar
  144. Stehle R, Kruger M, Scherer P, Brixius K, Schwinger RH, Pfitzer G (2002) Isometric force kinetics upon rapid activation and relaxation of mouse, guinea pig and human heart muscle studied on the subcellular myofibrillar level. Basic Res Cardiol 97(Suppl 1):I127–I135PubMedGoogle Scholar
  145. Stehle R, Solzin J, Iorga B, Poggesi C (2009) Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflugers Arch 458(2):337–357PubMedCrossRefGoogle Scholar
  146. Stevens CM, Rayani K, Genge CE, Liang B, Roller JM, Li C, Singh G, Li YA, Tieleman DP, van Petegem F, Tibbits GF (2016) Functional characterization of cardiac and slow skeletal troponin C paralogs in zebrafish by MD simulation and isothermal titration calorimetry. Biophys J 111:38–49PubMedCrossRefGoogle Scholar
  147. St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17(6):884–889PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sun L, Lien CL, Xu X, Shung KK (2008) In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45–75 MHz). Ultrasound Med Biol 34(1):31–39PubMedCrossRefGoogle Scholar
  149. Szuts V, Menesi D, Varga-Orvos Z, Zvara A, Houshmand N, Bitay M, Bogats G, Virag L, Baczko I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deak F, Puskas LG, Papp JG, Kiss I, Varro A, Jost N (2013) Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol 91(8):648–656PubMedCrossRefGoogle Scholar
  150. ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46(5):703–714PubMedCrossRefGoogle Scholar
  151. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881PubMedPubMedCentralCrossRefGoogle Scholar
  152. Tsai CT, Wu CK, Chiang FT, Tseng CD, Lee JK, Yu CC, Wang YC, Lai LP, Lin JL, Hwang JJ (2011) In-vitro recording of adult zebrafish heart electrocardiogram – a platform for pharmacological testing. Clin Chim Acta 412(21-22):1963–1967PubMedCrossRefGoogle Scholar
  153. Verkerk AO, Remme CA (2012) Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol 3:255PubMedPubMedCentralGoogle Scholar
  154. Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201(Pt 4):533–547PubMedGoogle Scholar
  155. Vornanen M (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J Exp Biol 202(Pt 13):1763–1775PubMedGoogle Scholar
  156. Vornanen M, Hassinen M (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels 10(2):101–110PubMedCrossRefGoogle Scholar
  157. Wang SQ, Huang YH, Liu KS, Zhou ZQ (1997) Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 35(3):193–200PubMedCrossRefGoogle Scholar
  158. Warren KS, Baker K, Fishman MC (2001) The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol Heart Circ Physiol 281(4):H1711–H1719PubMedGoogle Scholar
  159. Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505(2):144–154PubMedCrossRefGoogle Scholar
  160. Wood T, Thoresen M (2015) Physiological responses to hypothermia. Semin Fetal Neonatal Med 20(2):87–96PubMedCrossRefGoogle Scholar
  161. Wu C, Sharma K, Laster K, Hersi M, Torres C, Lukas TJ, Moore EJ (2014a) Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish. BMC Physiol 14:1PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE (2014b) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464(1):13–22PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yin Z, Ren J, Guo W (2015) Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 1852(1):47–52PubMedCrossRefGoogle Scholar
  164. Zhang PC, Llach A, Sheng XY, Hove-Madsen L, Tibbits GF (2011) Calcium handling in zebrafish ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 300(1):R56–R66PubMedCrossRefGoogle Scholar
  165. Zhao L, Zhao XY, Tian T, Lu QL, Skrbo-Larssen N, Wu D, Kuang Z, Zheng XF, Han YC, Yang SY, Zhang CM, Meng AM (2008) Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovasc Res 80(2):200–208PubMedCrossRefGoogle Scholar
  166. Zhao Y, Abdelfattah AS, Zhao Y, Ruangkittisakul A, Ballanyi K, Campbell RE, Harrison DJ (2014) Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr Biol (Camb) 6(7):714–725CrossRefGoogle Scholar
  167. Zhou W, Horstick EJ, Hirata H, Kuwada JY (2008) Identification and expression of voltage-gated calcium channel beta subunits in Zebrafish. Dev Dyn 237(12):3842–3852PubMedCrossRefGoogle Scholar
  168. Zou J, Tran D, Baalbaki M, Tang LF, Poon A, Pelonero A, Titus EW, Yuan C, Shi C, Patchava S, Halper E, Garg J, Movsesyan I, Yin C, Wu R, Wilsbacher LD, Liu J, Hager RL, Coughlin SR, Jinek M, Pullinger CR, Kane JP, Hart DO, Kwok PY, Deo RC (2015) An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. Elife 4, e09406PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christine E. Genge
    • 1
  • Eric Lin
    • 1
  • Ling Lee
    • 2
  • XiaoYe Sheng
    • 2
  • Kaveh Rayani
    • 1
  • Marvin Gunawan
    • 1
  • Charles M. Stevens
    • 1
    • 2
  • Alison Yueh Li
    • 1
  • Sanam Shafaat Talab
    • 1
  • Thomas W. Claydon
    • 1
  • Leif Hove-Madsen
    • 1
    • 3
  • Glen F. Tibbits
    • 1
    • 2
    Email author
  1. 1.Molecular Cardiac Physiology Group, Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada
  2. 2.BC Children’s Hospital Research InstituteVancouverCanada
  3. 3.Cardiovascular Research Centre CSIC-ICCCHospital de Sant PauBarcelonaSpain

Personalised recommendations