Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology

  • Sara Hassanpour Tamrin
  • Fatemeh Sadat Majedi
  • Mahdi Tondar
  • Amir Sanati-NezhadEmail author
  • Mohammad Mahdi Hasani-SadrabadiEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 171)


Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.


Differentiation Electromagnetic field Self-renewal Stem cell fate Stem cell niche 



The authors thank Dr. Mehran Solati for insightful discussions that greatly assisted the research.


  1. Adams DS, Levin M (2013) Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352:95–122PubMedCrossRefGoogle Scholar
  2. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645PubMedCrossRefGoogle Scholar
  3. Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, Birch-Machin MA, von Zglinicki T, Saretzki G (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053PubMedCrossRefGoogle Scholar
  4. Alwaal A, Zaid UB, Lin C-S, Lue TF (2015) Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 82:137–144PubMedCrossRefGoogle Scholar
  5. Andreyev AY, Kushnareva YE, Starkov A (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214PubMedGoogle Scholar
  6. Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, Von Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529PubMedCrossRefGoogle Scholar
  7. Asashima M, Shimada K, Pfeiffer CJ (1991) Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics 12:215–224PubMedCrossRefGoogle Scholar
  8. Baek S, Quan X, Kim S, Lengner C, Park J-K, Kim J (2014) Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 8:10125–10138PubMedCrossRefGoogle Scholar
  9. Bagheri S, Nosrati M, Li S, Fong S, Torabian S, Rangel J, Moore DH, Federman S, LaPosa RR, Baehner FL (2006) Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci 103:11306–11311PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bauréus Koch C, Sommarin M, Persson B, Salford L, Eberhardt J (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402PubMedCrossRefGoogle Scholar
  11. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  12. Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bernhard O, Palsson SNB (2004) Tissue engineering. Pearson Prentice HallGoogle Scholar
  14. Blank M, Goodman R (2009) Electromagnetic fields stress living cells. Pathophysiology 16:71–78PubMedCrossRefGoogle Scholar
  15. Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111:492–503PubMedCrossRefGoogle Scholar
  16. Bowne‐Anderson H, Zanic M, Kauer M, Howard J (2013) Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 35:452–461PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brown MJ, Loew LM (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127:117–128PubMedCrossRefGoogle Scholar
  18. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefGoogle Scholar
  19. Calabrò E, Condello S, Currò M, Ferlazzo N, Vecchio M, Caccamo D, Magazù S, Ientile R (2013) 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid Med Cell Longev 2013:414393Google Scholar
  20. Celso CL, Wu JW, Lin CP (2009) In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2:619–631PubMedCrossRefGoogle Scholar
  21. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia A mechanism of o2 sensing. J Biol Chem 275:25130–25138PubMedCrossRefGoogle Scholar
  22. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40PubMedCrossRefGoogle Scholar
  23. Chen G, Upham BL, Sun W, Chang C-C, Rothwell EJ, Chen K-M, Yamasaki H, Trosko JE (2000) Effect of electromagnetic field exposure on chemically induced differentiation of friend erythroleukemia cells. Environ Health Perspect 108:967PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cho MR, Thatte HS, Silvia MT, Golan DE (1999) Transmembrane calcium influx induced by ac electric fields. FASEB J 13:677–683PubMedGoogle Scholar
  25. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478PubMedCrossRefGoogle Scholar
  26. Chu L, Hao H, Luo M, Huang Y, Chen Z, Lu T, Zhao X, Verfaillie CM, Zweier JL, Liu Z (2011) Ox‐LDL modifies the behaviour of bone marrow stem cells and impairs their endothelial differentiation via inhibition of Akt phosphorylation. J Cell Mol Med 15:423–432PubMedCrossRefGoogle Scholar
  27. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4:S60–S67PubMedPubMedCentralCrossRefGoogle Scholar
  28. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058PubMedCrossRefGoogle Scholar
  29. Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012, 683897PubMedPubMedCentralCrossRefGoogle Scholar
  30. Denegre JM, Valles JM, Lin K, Jordan W, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci 95:14729–14732PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783PubMedPubMedCentralCrossRefGoogle Scholar
  32. Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ (2015) Human induced pluripotent stem cell-derived cardiomyocytes as a model for heart development and congenital heart disease. Stem Cell Rev Rep 11:710–727CrossRefGoogle Scholar
  33. Dzierzak E, Enver T (2008) Stem cell researchers find their niche. Development 135:1569–1573PubMedCrossRefGoogle Scholar
  34. Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22PubMedCrossRefGoogle Scholar
  35. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102:4783–4788PubMedPubMedCentralCrossRefGoogle Scholar
  36. Facucho-Oliveira J, John JS (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140–158CrossRefGoogle Scholar
  37. Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, Cimini A, Di Ilio C, Amicarelli F (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39:2093–2106PubMedCrossRefGoogle Scholar
  38. Feng B, Qiu L, Ye C, Chen L, Fu Y, Sun W (2016) Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway. Int J Radiat Biol 92:148–155Google Scholar
  39. Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC (2010) Hypoxia inducible-factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138PubMedPubMedCentralCrossRefGoogle Scholar
  40. Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  41. Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci 104:6223–6228PubMedPubMedCentralCrossRefGoogle Scholar
  42. Furse C, Christensen DA, Durney CH (2009) Basic introduction to bioelectromagnetics. CRC Press, Boca RatonCrossRefGoogle Scholar
  43. Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F, Forte E, Ionta V, Giuliani L, D'Emilia E, Frati G (2009) Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res 82:411–420PubMedCrossRefGoogle Scholar
  44. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840:2506–2519Google Scholar
  45. Gerardi G, De Ninno A, Prosdocimi M, Ferrari V, Barbaro F, Mazzariol S, Bernardini D, Talpo G (2008) Effects of electromagnetic fields of low frequency and low intensity on rat metabolism. Biomagn Res Technol 6:3PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gherardini L, Ciuti G, Tognarelli S, Cinti C (2014) Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 15:5366–5387PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gillo B, Ma Y-S, Marks A (1993) Calcium influx in induced differentiation of murine erythroleukemia cells. Blood 81:783–792PubMedGoogle Scholar
  48. Goldstein LS, Reyna S, Woodruff G (2015) Probing the secrets of Alzheimer’s disease using human-induced pluripotent stem cell technology. Neurotherapeutics 12:121–125PubMedCrossRefGoogle Scholar
  49. Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB (2004) Effects of 50Hz electromagnetic fields on voltage-gated Ca < sup > 2 + </sup > channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315PubMedCrossRefGoogle Scholar
  50. Graziewicz MA, Day BJ, Copeland WC (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 30:2817–2824PubMedPubMedCentralCrossRefGoogle Scholar
  51. Guo Y, Einhorn L, Kelley M, Hirota K, Yodoi J, Reinbold R, Scholer H, Ramsey H, Hromas R (2004) Redox regulation of the embryonic stem cell transcription factor oct‐4 by thioredoxin. Stem Cells 22:259–264PubMedCrossRefGoogle Scholar
  52. Guo Y-L, Chakraborty S, Rajan SS, Wang R, Huang F (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19:1321–1331PubMedPubMedCentralCrossRefGoogle Scholar
  53. Halgamuge MN, Perssont BR, Salford LG, Mendis P, Eberhardt J (2009) Comparison between two models for interactions between electric and magnetic fields and proteins in cell membranes. Environ Eng Sci 26:1473–1480CrossRefGoogle Scholar
  54. Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21:894–899PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513PubMedPubMedCentralCrossRefGoogle Scholar
  56. Han J, Won E-J, Lee B-Y, Hwang U-K, Kim I-C, Yim JH, Leung KMY, Lee YS, Lee J-S (2014) Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus. Aquat Toxicol 152:264–272PubMedCrossRefGoogle Scholar
  57. Harris VK, Sadiq SA (2015) Stem cell therapy in multiple sclerosis: a future perspective. Neurodegener Dis Manag 5:167–170PubMedCrossRefGoogle Scholar
  58. Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J (2011) High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol 286:31–40PubMedCrossRefGoogle Scholar
  59. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523PubMedPubMedCentralCrossRefGoogle Scholar
  61. Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25:254–264Google Scholar
  62. Hosokawa K, Arai F, Yoshihara H, Nakamura Y, Gomei Y, Iwasaki H, Miyamoto K, Shima H, Ito K, Suda T (2007) Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 363:578–583PubMedCrossRefGoogle Scholar
  63. Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18PubMedCrossRefGoogle Scholar
  64. Huang X, Cho S, Spangrude G (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ 14:1851–1859PubMedCrossRefGoogle Scholar
  65. Inaba M, Yamashita YM (2012) Asymmetric stem cell division: precision for robustness. Cell Stem Cell 11:461–469PubMedCrossRefGoogle Scholar
  66. James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS (2015) NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 6Google Scholar
  67. Jelenković A, Janać B, Pešić V, Jovanović D, Vasiljević I, Prolić Z (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68:355–360PubMedCrossRefGoogle Scholar
  68. Jelınek F, Pokorný J, Šaroch J, Trkal V, Hašek J, Palán B (1999) Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Bioelectrochem Bioenerg 48:261–266Google Scholar
  69. Ji A-R, Ku S-Y, Cho MS, Kim YY, Kim YJ, Oh SK, Kim SH, Moon SY, Choi YM (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42:175–186PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jiang F-Y, Tang L-L, Zeng C, Liu H, Liang K-D, Mi Y, Sun C-X (2008) Effects of electric pulses on apoptosis induction and mitochondrial transmembrane potential of cancer cells. In: 7th Asian-Pacific conference on medical and biological engineering. Springer, pp 511–513Google Scholar
  71. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–4038PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kang J, Shakya A, Tantin D (2009a) Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci 34:491–499PubMedCrossRefGoogle Scholar
  73. Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, Tantin D (2009b) A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev 23:208–222PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kang KS, Hong JM, Kang JA, Rhie J-W, Jeong YH, Cho D-W (2013) Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med 45, e6PubMedCentralCrossRefGoogle Scholar
  75. Katsir G, Parola AH (1998) Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun 252:753–756PubMedCrossRefGoogle Scholar
  76. Kemp K, Redondo J, Mallam E, Scolding N, Wilkins A (2015) The use of mesenchymal stem cells for treating neurodegenerative diseases. In: Stem cells and cancer stem cells, vol 13. Springer, pp 3–20Google Scholar
  77. Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2:11–20PubMedCrossRefGoogle Scholar
  78. Knoblich JA (2008) Mechanisms of asymmetric stem Cell Division. Cell 132:583–597PubMedCrossRefGoogle Scholar
  79. Kobayashi-Miura M, Nakamura H, Yodoi J, Shiota K (2002) Thioredoxin, an anti-oxidant protein, protects mouse embryos from oxidative stress-induced developmental anomalies. Free Radic Res 36:949–956PubMedCrossRefGoogle Scholar
  80. Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J, Beach D (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299PubMedCrossRefGoogle Scholar
  81. Kristián T, Gertsch J, Bates TE, Siesjö BK (2000) Characteristics of the calcium‐triggered mitochondrial permeability transition in nonsynaptic brain mitochondria. J Neurochem 74:1999–2009PubMedCrossRefGoogle Scholar
  82. Larsimont JC, Blanpain C (2015) Single stem cell gene therapy for genetic skin disease. EMBO Mol Med 7:366–367PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lee B-C, Johng H-M, Lim J-K, Jeong JH, Baik KY, Nam TJ, Lee JH, Kim J, Sohn UD, Yoon G (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73:43–48PubMedCrossRefGoogle Scholar
  84. Lee MK, Hande MP, Sabapathy K (2005) Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation-and stress-induced p53-dependent apoptosis. J Cell Sci 118:819–829PubMedCrossRefGoogle Scholar
  85. Leszczynski D, Joenväärä S, Reivinen J, Kuokka R (2002) Non‐thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer‐and blood‐brain barrier‐related effects. Differentiation 70:120–129PubMedCrossRefGoogle Scholar
  86. Levin M (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24:295–315PubMedCrossRefGoogle Scholar
  87. Li L, Jiang J (2011) Stem cell niches and endogenous electric fields in tissue repair. Front Med 5:40–44PubMedCrossRefGoogle Scholar
  88. Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557PubMedCrossRefGoogle Scholar
  89. Li S, Crothers J, Haqq CM, Blackburn EH (2005) Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J Biol Chem 280:23709–23717PubMedCrossRefGoogle Scholar
  90. Li H-J, Guo L-M, Yang L-L, Zhou Y-C, Zhang Y-J, Guo J, Xie X-J, Guo G-Z (2013) Electromagnetic-pulse-induced activation of p38 MAPK pathway and disruption of blood-retinal barrier. Toxicol Lett 220:35–43Google Scholar
  91. Lim K-T, Kim J-H, Seonwoo H, Son H-M, Baik S-J, Park J-Y, Jeon S-H, Kim E-S, Choung Y-H, Cho C-S (2009) In vitro effects of electromagnetic field stimulation on cells in tissue engineering. Tissue Eng Regener Med 6:675–684Google Scholar
  92. Lin CC, Lin RW, Chang CW, Wang GJ, Lai KA (2015) Single‐pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics 36:494–505PubMedCrossRefGoogle Scholar
  93. Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z (2013) Exposure to 1800MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 218:2–9PubMedCrossRefGoogle Scholar
  94. Lonergan T, Brenner C, Bavister B (2006) Differentiation‐related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol 208:149–153PubMedCrossRefGoogle Scholar
  95. Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  96. Loureiro R, Mesquita KA, Oliveira PJ, Vega-Naredo I (2013) Mitochondria in cancer stem cells: a target for therapy. Recent Pat Endocr Metab Immune Drug Dis 7:102–114Google Scholar
  97. Lu T, Parthasarathy S, Hao H, Luo M, Ahmed S, Zhu J, Luo S, Kuppusamy P, Sen CK, Verfaillie CM (2010) Reactive oxygen species mediate oxidized low-density lipoprotein-induced inhibition of oct-4 expression and endothelial differentiation of bone marrow stem cells. Antioxid Redox Signal 13:1845–1856PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z (2014) Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. PLoS One 9, e90041PubMedPubMedCentralCrossRefGoogle Scholar
  99. Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Cavallini C, Fontani V, Ventura C (2013) Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant 22:1227–1235PubMedCrossRefGoogle Scholar
  100. Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University PressGoogle Scholar
  101. Masri FA, Comhair SA, Dostanic‐Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC (2008) Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci 1:99–106PubMedCrossRefGoogle Scholar
  102. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652PubMedPubMedCentralCrossRefGoogle Scholar
  103. Matthews RE (2007) Harold burr's biofields measuring the electromagnetics of life. Subtle Energies Energy Med J Arch 18Google Scholar
  104. Mayer‐Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, Jansson V, Müller PE (2011) Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32:283–290PubMedCrossRefGoogle Scholar
  105. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP (2015) Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 51:158–165PubMedCrossRefGoogle Scholar
  106. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642PubMedCrossRefGoogle Scholar
  107. Moon J-H, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Whang KY, Kang Y-K, Yeo S (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21:1305–1315PubMedPubMedCentralCrossRefGoogle Scholar
  108. Moon SH, Jenkins CM, Kiebish MA, Sims HF, Mancuso DJ, Gross RW (2012) Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release. J Biol Chem 287:29837–29850PubMedPubMedCentralCrossRefGoogle Scholar
  109. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA (2010) Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med 48:579–589PubMedCrossRefGoogle Scholar
  110. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074PubMedCrossRefGoogle Scholar
  111. Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639PubMedCrossRefGoogle Scholar
  112. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2007) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106PubMedCrossRefGoogle Scholar
  113. Nakamura M, Bhatnagar A, Sadoshima J (2012) Overview of pyridine nucleotides review series. Circ Res 111:604–610PubMedPubMedCentralCrossRefGoogle Scholar
  114. Napotnik TB, Wu YH, Gundersen MA, Miklavčič D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264CrossRefGoogle Scholar
  115. Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nichols J (2001) Introducing embryonic stem cells. Curr Biol 11:R503–R505PubMedCrossRefGoogle Scholar
  117. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391PubMedCrossRefGoogle Scholar
  118. Nicotera P, Thor H, Orrenius S (1989) Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia. FASEB J 3:59–64PubMedGoogle Scholar
  119. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312PubMedCrossRefGoogle Scholar
  120. Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527PubMedCrossRefGoogle Scholar
  121. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  122. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E (2005) Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 36:350–355PubMedCrossRefGoogle Scholar
  123. Onuma EK, Hui S-W (1988) Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 106:2067–2075PubMedCrossRefGoogle Scholar
  124. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128PubMedCrossRefGoogle Scholar
  125. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922PubMedCrossRefGoogle Scholar
  126. Panagopoulos DJ (2014) Electromagnetic interaction between environmental fields and living systems determines health and well-being. Int J Condens Matter Adv Mater Superconductivity Res 13:99Google Scholar
  127. Panagopoulos DJ, Karabarbounis A, Margaritis LH (2002) Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298:95–102PubMedCrossRefGoogle Scholar
  128. Papayannopoulou T, Scadden DT (2008) Stem-cell ecology and stem cells in motion. Blood 111:3923–3930PubMedPubMedCentralCrossRefGoogle Scholar
  129. Park J-E, Seo Y-K, Yoon H-H, Kim C-W, Park J-K, Jeon S (2013) Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int 62:418–424Google Scholar
  130. Parker GC, Acsadi G, Brenner CA (2009) Mitochondria: determinants of stem cell fate? Stem Cells Dev 18:803–806PubMedCrossRefGoogle Scholar
  131. Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155:135–147PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pesce M, Schöler HR (2000) Oct‐4: Control of totipotency and germline determination. Mol Reprod Dev 55:452–457PubMedCrossRefGoogle Scholar
  133. Pesce M, Schöler HR (2001) Oct-4:gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278PubMedCrossRefGoogle Scholar
  134. Pienta KJ, Hoover CN (1994) Coupling of cell structure to cell metabolism and function. J Cell Biochem 55:16–21PubMedCrossRefGoogle Scholar
  135. Pokorný J (2004) Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63:321–326PubMedCrossRefGoogle Scholar
  136. Pokorný J (2012) Physical aspects of biological activity and cancer. AIP Adv 2:011207CrossRefGoogle Scholar
  137. Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R (1997) Vibrations in microtubules. J Biol Phys 23:171–179PubMedPubMedCentralCrossRefGoogle Scholar
  138. Pokorný J, Hašek J, Jelínek F, Šaroch J, Palán B (2001) Electromagnetic activity of yeast cells in the M phase. Electro- Magnetobiol 20:371–396CrossRefGoogle Scholar
  139. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203PubMedCrossRefGoogle Scholar
  140. Rahnama M, Tuszynski JA, Bokkon I, Cifra M, Sardar P, Salari V (2011) Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 10:65–88PubMedCrossRefGoogle Scholar
  141. Ramalho R, Soares H, Melo L (2007) Microtubule behavior under strong electromagnetic fields. Mater Sci Eng C 27:1207–1210CrossRefGoogle Scholar
  142. Ramalho‐Santos M (2004) Stem cells as probabilistic self‐producing entities. Bioessays 26:1013–1016PubMedCrossRefGoogle Scholar
  143. Rattis FM, Voermans C, Reya T (2004) Wnt signaling in the stem cell niche. Curr Opin Hematol 11:88–94PubMedCrossRefGoogle Scholar
  144. Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med 88:981–986PubMedPubMedCentralCrossRefGoogle Scholar
  145. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  146. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414PubMedCrossRefGoogle Scholar
  147. Rodda DJ, Chew J-L, Lim L-H, Loh Y-H, Wang B, Ng H-H, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737PubMedCrossRefGoogle Scholar
  148. Rollwitz J, Lupke M, Simkó M (2004) Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim Biophys Acta 1674:231–238Google Scholar
  149. Roman A, Tombarkiewicz B (2009) Prolonged weakening of the geomagnetic field (GMF) affects the immune system of rats. Bioelectromagnetics 30:21–28PubMedCrossRefGoogle Scholar
  150. Rump A, Scholz T, Thiel C, Hartmann FK, Uta P, Hinrichs MH, Taft MH, Tsiavaliaris G (2011) Myosin-1C associates with microtubules and stabilizes the mitotic spindle during cell division. J Cell Sci 124:2521–2528PubMedCrossRefGoogle Scholar
  151. Ryan AK, Rosenfeld MG (1997) POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225PubMedCrossRefGoogle Scholar
  152. Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M (2008) The Warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Res 68:5198–5205PubMedPubMedCentralCrossRefGoogle Scholar
  153. Samudio I, Fiegl M, Andreeff M (2009) Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 69:2163–2166PubMedCrossRefGoogle Scholar
  154. Saretzki G (2005) Telomerase and oxidative stress in embryonic stem cells. Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis. Lippincott & Williams, PhiladelphiaGoogle Scholar
  155. Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464PubMedCrossRefGoogle Scholar
  156. Saretzki G (2009) Telomerase, mitochondria and oxidative stress. Exp Gerontol 44:485–492PubMedCrossRefGoogle Scholar
  157. Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7:1423–1434PubMedCrossRefGoogle Scholar
  158. Sauer H, Rahimi G, Hescheler J, Wartenberg M (1999) Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 75:710–723PubMedCrossRefGoogle Scholar
  159. Scarpa A, Graziotti P (1973) Mechanisms for intracellular calcium regulation in heart I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Physiol 62:756–772PubMedPubMedCentralCrossRefGoogle Scholar
  160. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182–1184PubMedCrossRefGoogle Scholar
  161. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735PubMedGoogle Scholar
  162. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619PubMedPubMedCentralCrossRefGoogle Scholar
  163. Shakya A, Cooksey R, Cox JE, Wang V, McClain DA, Tantin D (2009) Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol 11:320–327PubMedCrossRefGoogle Scholar
  164. Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11:365–374PubMedCrossRefGoogle Scholar
  165. Simeonova M, Wachner D, Gimsa J (2002) Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochemistry 56:215–218PubMedCrossRefGoogle Scholar
  166. Simkó M (2004) Induction of cell activation processes by low frequency electromagnetic fields. Scientific World Journal 4:4–22PubMedCrossRefGoogle Scholar
  167. Simko M (2007) Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14:1141–1152PubMedCrossRefGoogle Scholar
  168. Singh AM, Dalton S (2014) Cell cycle regulation of pluripotent stem cells. Stem cells: from basic research to therapy: basic stem cell biology, tissue formation during development, and model organisms 1:3Google Scholar
  169. Soda A, Ikehara T, Kinouchi Y, Yoshizaki K (2008) Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. J Med Invest 55:267–278PubMedCrossRefGoogle Scholar
  170. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104PubMedCrossRefGoogle Scholar
  171. Šrobár F (2012) Fröhlich systems in cellular physiology. Prague Med Rep 113:95–104PubMedCrossRefGoogle Scholar
  172. Šrobár F (2013) Impact of mitochondrial electric field on modal occupancy in the Fröhlich model of cellular electromagnetism. Electromagn Biol Med 32:401–408PubMedCrossRefGoogle Scholar
  173. St. John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153PubMedCrossRefGoogle Scholar
  174. Stracke R, Böhm K, Wollweber L, Tuszynski J, Unger E (2002) Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun 293:602–609PubMedCrossRefGoogle Scholar
  175. Suda T, Arai F, Hirao A (2005) Hematopoietic stem cells and their niche. Trends Immunol 26:426–433PubMedCrossRefGoogle Scholar
  176. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310PubMedCrossRefGoogle Scholar
  177. Taylor GW, Harvey EN (1931) The theory of mitogenetic radiation. Biol Bull 61:280–293CrossRefGoogle Scholar
  178. Thar R, Kühl M (2004) Propagation of electromagnetic radiation in mitochondria? J Theor Biol 230:261–270PubMedCrossRefGoogle Scholar
  179. Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA, Elias-Viñas D, Verdugo-Diaz L (2007) Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids Health Dis 6:31PubMedPubMedCentralCrossRefGoogle Scholar
  180. Trushko A, Schäffer E, Howard J (2013) The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force. Proc Natl Acad Sci 110:14670–14675PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tsai M-T, Li W-J, Tuan RS, Chang WH (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27:1169PubMedPubMedCentralCrossRefGoogle Scholar
  182. Valles JM (2002) Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys J 82:1260–1265PubMedPubMedCentralCrossRefGoogle Scholar
  183. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548PubMedPubMedCentralCrossRefGoogle Scholar
  184. Vladimirov YA, Proskurnina E (2009) Free radicals and cell chemiluminescence. Biochemistry (Moscow) 74:1545–1566CrossRefGoogle Scholar
  185. Walczak CE, Cai S, Khodjakov A (2010) Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 11:91–102PubMedPubMedCentralGoogle Scholar
  186. Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 6:3177–3185PubMedGoogle Scholar
  187. Wang B (2010) Phosphoproteome studies of human mitotic spindle proteinslmuGoogle Scholar
  188. Wang C, Zhou H, Peng R, Wang L, Su Z, Chen P, Wang S, Wang S, Liu Y, Cong J (2013) Electromagnetic pulse reduces free radical generation in rat liver mitochondria in vitro. Free Radic Res 47:276–282PubMedCrossRefGoogle Scholar
  189. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14PubMedPubMedCentralCrossRefGoogle Scholar
  190. Watt FM, Hogan B (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430PubMedCrossRefGoogle Scholar
  191. Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473PubMedCrossRefGoogle Scholar
  192. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–726PubMedCrossRefGoogle Scholar
  193. Wesbuer S, Lanvers-Kaminsky C, Duran-Seuberth I, Bolling T, Schafer K-L, Braun Y, Willich N, Greve B (2010) Association of telomerase activity with radio-and chemosensitivity of neuroblastomas. Radiat Oncol 5:66PubMedPubMedCentralCrossRefGoogle Scholar
  194. White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138PubMedCrossRefGoogle Scholar
  195. Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D, Taylor HS (2015) Endometrial stem cell transplantation in MPTP‐exposed primates: an alternative cell source for treatment of Parkinson's disease. J Cell Mol Med 19:249–256PubMedCrossRefGoogle Scholar
  196. Yan J, Dong L, Zhang B, Qi N (2010) Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 29:165–176PubMedCrossRefGoogle Scholar
  197. Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, Atkinson SP, Saretzki G, Armstrong L, Lako M (2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 26:850–863PubMedCrossRefGoogle Scholar
  198. Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H (2010) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285PubMedGoogle Scholar
  199. Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, Yu SC, Qian GS (2011) Mitochondrial and energy metabolism‐related properties as novel indicators of lung cancer stem cells. Int J Cancer 129:820–831PubMedCrossRefGoogle Scholar
  200. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  202. Zang L-Y, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477Google Scholar
  203. Zeni O, Di Pietro R, d'Ambrosio G, Massa R, Capri M, Naarala J, Juutilainen J, Scarfì MR (2007) Formation of reactive oxygen species in L929 cells after exposure to 900 MHz RF radiation with and without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone. Radiat Res 167:306–311PubMedCrossRefGoogle Scholar
  204. Zhai M, Jing D, Tong S, Wu Y, Wang P, Zeng Z, Shen G, Wang X, Xu Q, Luo E (2016) Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/β‐catenin signaling‐associated mechanism. Bioelectromagnetics 37:152–162CrossRefGoogle Scholar
  205. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18PubMedCrossRefGoogle Scholar
  206. Zhang H, Wang ZZ (2008) Mechanisms that mediate stem cell self‐renewal and differentiation. J Cell Biochem 103:709–718PubMedCrossRefGoogle Scholar
  207. Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873PubMedPubMedCentralCrossRefGoogle Scholar
  208. Zhao Y, Zhan Q (2012) Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model 9:26PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zhao M, Forrester JV, McCaig CD (1999) A small, physiological electric field orients cell division. Proc Natl Acad Sci 96:4942–4946PubMedPubMedCentralCrossRefGoogle Scholar
  210. Zhou J, He H, Yang L, Chen S, Guo H, Xia L, Liu H, Qin Y, Liu C, Wei X (2012a) Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Arch Med Res 43:274–282PubMedCrossRefGoogle Scholar
  211. Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C (2012b) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116PubMedPubMedCentralCrossRefGoogle Scholar
  212. Zmyślony M, Politanski P, Rajkowska E, Szymczak W, Jajte J (2004) Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 25:324–328PubMedCrossRefGoogle Scholar
  213. Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, Sowa P, Polaniak R, Birkner E, Latocha M, Pilc K, Suchanek R (2005) Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes-an in vitro study. J Physiol Pharmacol 56:101PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sara Hassanpour Tamrin
    • 1
  • Fatemeh Sadat Majedi
    • 2
  • Mahdi Tondar
    • 3
  • Amir Sanati-Nezhad
    • 4
    Email author
  • Mohammad Mahdi Hasani-Sadrabadi
    • 5
    • 6
    Email author
  1. 1.Center of Excellence in Biomaterials, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Biochemistry and Molecular & Cellular Biology, School of MedicineGeorgetown UniversityWashington, DCUSA
  4. 4.BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and EducationUniversity of CalgaryCalgaryCanada
  5. 5.Department of Chemistry & Biochemistry, and California NanoSystems InstituteUniversity of California at Los AngelesLos AngelesUSA
  6. 6.Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations