Skip to main content

Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 171))

Abstract

Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR’s many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson JJ, Salama G (1989) Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr 21:283–294

    Article  CAS  PubMed  Google Scholar 

  • Aghdasi B, Zhang JZ, Wu Y, Reid MB, Hamilton SL (1997) Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J Biol Chem 272:3739–3748

    Article  CAS  PubMed  Google Scholar 

  • Angelos MG, Kutala VK, Torres CA, He G, Stoner JD, Mohammad M, Kuppusamy P (2006) Hypoxic reperfusion of the ischemic heart and oxygen radical generation. Am J Physiol Heart Circ Physiol 290:H341–H347

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A 106:22275–22280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Bass R, Ruddock LW, Klappa P, Freedman RB (2004) A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem 279:5257–5262

    Article  CAS  PubMed  Google Scholar 

  • Bassani RA, Bassani JW, Bers DM (1992) Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453:591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470

    Article  CAS  PubMed  Google Scholar 

  • Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84:387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Gyorke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belevych AE, Terentyev D, Terentyeva R, Ho HT, Gyorke I, Bonilla IM, Carnes CA, Billman GE, Gyorke S (2012) Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circ Res 110:569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bers DM (2004) Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 37:417–429

    Article  CAS  PubMed  Google Scholar 

  • Bovo E, Lipsius SL, Zima AV (2012) Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during beta-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 590:3291–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovo E, de Tombe PP, Zima AV (2014) The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 106:1902–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovo E, Mazurek SR, de Tombe PP, Zima AV (2015a) Increased Energy Demand during Adrenergic Receptor Stimulation Contributes to Ca(2+) Wave Generation. Biophys J 109:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Bovo E, Mazurek SR, Fill M, Zima AV (2015b) Cytosolic Ca(2)(+) buffering determines the intra-SR Ca(2)(+) concentration at which cardiac Ca(2)(+) sparks terminate. Cell Calcium 58:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Aon MA, Frasier CR, Sloan RC, Maloney AH, Anderson EJ, O'Rourke B (2010) Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J Mol Cell Cardiol 48:673–679

    Article  CAS  PubMed  Google Scholar 

  • Bunch TJ, Hohnloser SH, Gersh BJ (2007) Mechanisms of sudden cardiac death in myocardial infarction survivors: insights from the randomized trials of implantable cardioverter-defibrillators. Circulation 115:2451–2457

    Article  PubMed  Google Scholar 

  • Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104:2149–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceconi C, Curello S, Cargnoni A, Ferrari R, Albertini A, Visioli O (1988) The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J Mol Cell Cardiol 20:5–13

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A, Tian X, Jones PP, O'Mara ML, Liu Y, Mi T, Zhang L, Bolstad J, Semeniuk L, Cheng H, Zhang J, Chen J, Tieleman DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+−triggered arrhythmias. Nat Med 20:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  CAS  PubMed  Google Scholar 

  • Christensen NJ, Videbaek J (1974) Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest 54:278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornea RL, Nitu F, Gruber S, Kohler K, Satzer M, Thomas DD, Fruen BR (2009) FRET-based mapping of calmodulin bound to the RyR1 Ca2+ release channel. Proc Natl Acad Sci U S A 106:6128–6133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowburn PJ, Cleland JG, Coats AJ, Komajda M (1998) Risk stratification in chronic heart failure. Eur Heart J 19:696–710

    Article  CAS  PubMed  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  CAS  PubMed  Google Scholar 

  • Domeier TL, Blatter LA, Zima AV (2009) Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol 587:5197–5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domenech RJ, Macho P, Velez D, Sanchez G, Liu X, Dhalla N (1998) Tachycardia preconditions infarct size in dogs: role of adenosine and protein kinase C. Circulation 97:786–794

    Article  CAS  PubMed  Google Scholar 

  • Eager KR, Dulhunty AF (1998) Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol 163:9–18

    Article  CAS  PubMed  Google Scholar 

  • Eisner DA, Trafford AW, Diaz ME, Overend CL, O'Neill SC (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38:589–604

    Article  CAS  PubMed  Google Scholar 

  • Eisner DA, Kashimura T, Venetucci LA, Trafford AW (2009) From the ryanodine receptor to cardiac arrhythmias. Circ J 73:1561–1567

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    CAS  PubMed  Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249:469–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genomics 37:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383:375–388

    Article  CAS  PubMed  Google Scholar 

  • Gillespie D (2008) Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys J 94:1169–1184

    Article  CAS  PubMed  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman YE (1987) Kinetics of the actomyosin ATPase in muscle fibers. Annu Rev Physiol 49:637–654

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM (2010) Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 285:28938–28945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Gillespie D, Fill M (2012) Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res 111:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyorke S, Carnes C (2008) Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 119:340–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128

    Article  PubMed  PubMed Central  Google Scholar 

  • Han HM, Wei RS, Lai FA, Yin CC (2006) Molecular nature of sulfhydryl modification by hydrogen peroxide on type 1 ryanodine receptor. Acta Pharmacol Sin 27:888–894

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122:1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di LF, de GH, Schulz R, Heusch G (2006) Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71:374–382

    Google Scholar 

  • Hill MF, Singal PK (1997) Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 96:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435

    Article  CAS  PubMed  Google Scholar 

  • Houser SR, Piacentino V III, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    Article  CAS  PubMed  Google Scholar 

  • Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217

    Article  CAS  PubMed  Google Scholar 

  • Janssen PM, de Tombe PP (1997) Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol 272:H1892–H1897

    CAS  PubMed  Google Scholar 

  • Kimlicka L, Lau K, Tung CC, Van PF (2013) Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat Commun 4:1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    CAS  PubMed  Google Scholar 

  • Kubalova Z, Terentyev D, Viatchenko-Karpinski S, Nishijima Y, Gyorke I, Terentyeva R, da Cunha DN, Sridhar A, Feldman DS, Hamlin RL, Carnes CA, Gyorke S (2005) Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A 102:14104–14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz T, Offner B, Schreieck J, Richardt G, Tolg R, Schomig A (1995) Nonexocytotic noradrenaline release and ventricular fibrillation in ischemic rat hearts. Naunyn Schmiedebergs Arch Pharmacol 352:491–496

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG (2004) Beyond Bowditch: the convergence of cardiac chronotropy and inotropy. Cell Calcium 35:629–642

    Article  CAS  PubMed  Google Scholar 

  • Lameris TW, de ZS, Alberts G, Boomsma F, Duncker DJ, Verdouw PD, Veld AJ, van den Meiracker AH (2000) Time course and mechanism of myocardial catecholamine release during transient ischemia in vivo. Circulation 101:2645–2650

    Google Scholar 

  • Lane RE, Cowie MR, Chow AW (2005) Prediction and prevention of sudden cardiac death in heart failure. Heart 91:674–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93:9782–9787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnart SE (2007) Novel targets for treating heart and muscle disease: stabilizing ryanodine receptors and preventing intracellular calcium leak. Curr Opin Pharmacol 7:225–232

    Article  CAS  PubMed  Google Scholar 

  • Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106:633–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S, Imbriani M, Napolitano C, Lai FA, Priori SG (2006) Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res 99:292–298

    Article  CAS  PubMed  Google Scholar 

  • Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 121:822–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1994) Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy. J Physiol 480(Pt 1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyer X, Gomez AM, Milliez P, Fernandez-Velasco M, Vangheluwe P, Vinet L, Charue D, Vaudin E, Zhang W, Sainte-Marie Y, Robidel E, Marty I, Mayer B, Jaisser F, Mercadier JJ, Richard S, Shah AM, Benitah JP, Samuel JL, Heymes C (2008) Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation 117:3187–3198

    Article  CAS  PubMed  Google Scholar 

  • Mak S, Newton GE (2001) The oxidative stress hypothesis of congestive heart failure: radical thoughts. Chest 120:2035–2046

    Article  CAS  PubMed  Google Scholar 

  • Makaula S, Lochner A, Genade S, Sack MN, Awan MM, Opie LH (2005) H-89, a non-specific inhibitor of protein kinase A, promotes post-ischemic cardiac contractile recovery and reduces infarct size. J Cardiovasc Pharmacol 45:341–347

    Article  CAS  PubMed  Google Scholar 

  • Makino N, Maeda T, Oyama J, Sasaki M, Higuchi Y, Mimori K, Shimizu T (2011) Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice. J Mol Cell Cardiol 50:670–677

    Article  CAS  PubMed  Google Scholar 

  • Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  CAS  PubMed  Google Scholar 

  • Masumiya H, Li P, Zhang L, Chen SR (2001) Ryanodine sensitizes the Ca(2+) release channel (ryanodine receptor) to Ca(2+) activation. J Biol Chem 276:39727–39735

    Article  CAS  PubMed  Google Scholar 

  • Mazurek SR, Bovo E, Zima AV (2014) Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes. Free Radic Biol Med 68:159–167

    Article  CAS  PubMed  Google Scholar 

  • Mead-Savery FC, Wang R, Tanna-Topan B, Chen SR, Welch W, Williams AJ (2009) Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys J 96:1374–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner G (2004) Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium 35:621–628

    Article  CAS  PubMed  Google Scholar 

  • Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–RA219

    CAS  PubMed  Google Scholar 

  • Mochizuki M, Yano M, Oda T, Tateishi H, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2007) Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J Am Coll Cardiol 49:1722–1732

    Article  CAS  PubMed  Google Scholar 

  • Nabauer M, Morad M (1990) Ca2(+)-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol 258:C189–C193

    CAS  PubMed  Google Scholar 

  • Nagasaka S, Katoh H, Niu CF, Matsui S, Urushida T, Satoh H, Watanabe Y, Hayashi H (2007) Protein kinase A catalytic subunit alters cardiac mitochondrial redox state and membrane potential via the formation of reactive oxygen species. Circ J 71:429–436

    Article  CAS  PubMed  Google Scholar 

  • Nogueira L, Figueiredo-Freitas C, Casimiro-Lopes G, Magdesian MH, Assreuy J, Sorenson MM (2009) Myosin is reversibly inhibited by S-nitrosylation. Biochem J 424:221–231

    Article  CAS  PubMed  Google Scholar 

  • Opie LH (1993) The mechanism of myocyte death in ischaemia. Eur Heart J 14 Suppl G:31–33

    Google Scholar 

  • Opie LH, Clusin WT (1990) Cellular mechanism for ischemic ventricular arrhythmias. Annu Rev Med 41:231–238

    Article  CAS  PubMed  Google Scholar 

  • Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14:61–66

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131:325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, Durand P, Guicheney P, Kyndt F, Leenhardt A, Le MH, Lucet V, Mabo P, Probst V, Monnier N, Ray PF, Santoni E, Tremeaux P, Lacampagne A, Faure J, Lunardi J, Marty I (2012) Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 21:2759–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P (2005) Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol 39:982–991

    Article  CAS  PubMed  Google Scholar 

  • Santiago DJ, Curran JW, Bers DM, Lederer WJ, Stern MD, Rios E, Shannon TR (2010) Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes. Biophys J 98:2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago DJ, Rios E, Shannon TR (2013) Isoproterenol increases the fraction of spark-dependent RyR-mediated leak in ventricular myocytes. Biophys J 104:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Blatter LA, Bers DM (1997) Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol 272:H657–H668

    CAS  PubMed  Google Scholar 

  • Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514

    Article  CAS  PubMed  Google Scholar 

  • Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780

    Article  CAS  PubMed  Google Scholar 

  • Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  CAS  PubMed  Google Scholar 

  • Sen L, Cui G, Fonarow GC, Laks H (2000) Differences in mechanisms of SR dysfunction in ischemic vs. idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 279:H709–H718

    CAS  PubMed  Google Scholar 

  • Serysheva II, Ludtke SJ, Baker ML, Cong Y, Topf M, Eramian D, Sali A, Hamilton SL, Chiu W (2008) Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci U S A 105:9610–9615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitsapesan R, Williams AJ (1994) Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Membr Biol 137:215–226

    Article  CAS  PubMed  Google Scholar 

  • Slodzinski MK, Aon MA, O'Rourke B (2008) Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol 45:650–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84:266–275

    Article  CAS  PubMed  Google Scholar 

  • Spear JF, Prabu SK, Galati D, Raza H, Anandatheerthavarada HK, Avadhani NG (2007) beta1-Adrenoreceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning. Am J Physiol Heart Circ Physiol 292:H2459–H2466

    Article  CAS  PubMed  Google Scholar 

  • Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35:591–601

    Article  CAS  PubMed  Google Scholar 

  • Stevens SC, Terentyev D, Kalyanasundaram A, Periasamy M, Gyorke S (2009) Intra-sarcoplasmic reticulum Ca2+ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca2+ in cardiomyocytes. J Physiol 587:4863–4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss JD, Wagenknecht T (2013) Structure of glutaraldehyde cross-linked ryanodine receptor. J Struct Biol 181:300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Viola HM, Filipovska A, Hool LC (2011) Ca(v)1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic Biol Med 51:1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, Gyorke S (2002) Luminal Ca2+ controls termination and refractory behavior of Ca2+−induced Ca2+ release in cardiac myocytes. Circ Res 91:414–420

    Article  CAS  PubMed  Google Scholar 

  • Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Gyorke S (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend DM (2007) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324

    Article  CAS  PubMed  Google Scholar 

  • Tung CC, Lobo PA, Kimlicka L, Van PF (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–588

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Petegem (2015) Ryanodine receptors: allosteric ion channel giants. J Mol Biol 427:31–53

    Google Scholar 

  • van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanden Hoek TL, Shao Z, Li C, Zak R, Schumacker PT, Becker LB (1996) Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol 270:H1334–H1341

    CAS  PubMed  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70

    Article  CAS  PubMed  Google Scholar 

  • Werns SW, Fantone JC, Ventura A, Lucchesi BR (1992) Myocardial glutathione depletion impairs recovery of isolated blood-perfused hearts after global ischaemia. J Mol Cell Cardiol 24:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Ter KH, Chen SR (2006) Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem J 396:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie LH, Weiss JN (2009) Arrhythmogenic consequences of intracellular calcium waves. Am J Physiol Heart Circ Physiol 297:H997–H1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing D, Chaudhary AK, Miller FJ Jr, Martins JB (2009) Free radical scavenger specifically prevents ischemic focal ventricular tachycardia. Heart Rhythm 6:530–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki H, Haendeler J, Berk BC (2003) Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 93:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Yano M (2008) Ryanodine receptor as a new therapeutic target of heart failure and lethal arrhythmia. Circ J 72:509–514

    Article  CAS  PubMed  Google Scholar 

  • Yavuz S (2008) Surgery as early revascularization after acute myocardial infarction. Anadolu Kardiyol Derg 8(Suppl 2):84–92

    PubMed  Google Scholar 

  • Zalk R, Clarke OB, des GA, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49

    Google Scholar 

  • Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jin B, Li L, Block ER, Patel JM (2005) Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol 288:C840–C849

    Article  CAS  PubMed  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    Article  CAS  PubMed  Google Scholar 

  • Zima AV, Terentyev D (2013) Sarcoplasmic reticulum Ca homeostasis and heart failure. In: The biophysics of the failing heart. Springer, pp 5–31

    Google Scholar 

  • Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103:e105–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zima AV, Bovo E, Bers DM, Blatter LA (2010) Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588:4743–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 466:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Zissimopoulos S, Viero C, Seidel M, Cumbes B, White J, Cheung I, Stewart R, Jeyakumar LH, Fleischer S, Mukherjee S, Thomas NL, Williams AJ, Lai FA (2013) N-terminus oligomerization regulates the function of cardiac ryanodine receptors. J Cell Sci 126:5042–5051

    Article  CAS  PubMed  Google Scholar 

  • Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190

    Article  CAS  PubMed  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 84:1404–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH Grant (R01HL130231), the Research Career Development Award from the Schweppe Foundation, and the RFC grant from Loyola University Chicago to A.V.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey V. Zima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zima, A.V., Mazurek, S.R. (2016). Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171. Reviews of Physiology, Biochemistry and Pharmacology, vol 171. Springer, Cham. https://doi.org/10.1007/112_2016_2

Download citation

Publish with us

Policies and ethics