Advertisement

Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart

  • Aleksey V. ZimaEmail author
  • Stefan R. Mazurek
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 171)

Abstract

Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR’s many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.

Keywords

Ca release Glutathione Heart Reactive oxygen species Ryanodine receptor Sarcoplasmic reticulum 

Notes

Acknowledgments

This work was supported by the NIH Grant (R01HL130231), the Research Career Development Award from the Schweppe Foundation, and the RFC grant from Loyola University Chicago to A.V.Z.

References

  1. Abramson JJ, Salama G (1989) Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr 21:283–294PubMedCrossRefGoogle Scholar
  2. Aghdasi B, Zhang JZ, Wu Y, Reid MB, Hamilton SL (1997) Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J Biol Chem 272:3739–3748PubMedCrossRefGoogle Scholar
  3. Angelos MG, Kutala VK, Torres CA, He G, Stoner JD, Mohammad M, Kuppusamy P (2006) Hypoxic reperfusion of the ischemic heart and oxygen radical generation. Am J Physiol Heart Circ Physiol 290:H341–H347PubMedCrossRefGoogle Scholar
  4. Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A 106:22275–22280PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495PubMedCrossRefGoogle Scholar
  8. Bass R, Ruddock LW, Klappa P, Freedman RB (2004) A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem 279:5257–5262PubMedCrossRefGoogle Scholar
  9. Bassani RA, Bassani JW, Bers DM (1992) Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 453:591–608PubMedPubMedCentralCrossRefGoogle Scholar
  10. Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470PubMedCrossRefGoogle Scholar
  11. Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248PubMedPubMedCentralCrossRefGoogle Scholar
  12. Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84:387–395PubMedPubMedCentralCrossRefGoogle Scholar
  13. Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Gyorke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502PubMedPubMedCentralCrossRefGoogle Scholar
  14. Belevych AE, Terentyev D, Terentyeva R, Ho HT, Gyorke I, Bonilla IM, Carnes CA, Billman GE, Gyorke S (2012) Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circ Res 110:569–577PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. Bers DM (2004) Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol 37:417–429PubMedCrossRefGoogle Scholar
  17. Bovo E, Lipsius SL, Zima AV (2012) Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during beta-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 590:3291–3304PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bovo E, de Tombe PP, Zima AV (2014) The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 106:1902–1909PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bovo E, Mazurek SR, de Tombe PP, Zima AV (2015a) Increased Energy Demand during Adrenergic Receptor Stimulation Contributes to Ca(2+) Wave Generation. Biophys J 109:1583–1591PubMedCrossRefGoogle Scholar
  20. Bovo E, Mazurek SR, Fill M, Zima AV (2015b) Cytosolic Ca(2)(+) buffering determines the intra-SR Ca(2)(+) concentration at which cardiac Ca(2)(+) sparks terminate. Cell Calcium 58:246–253PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360PubMedCrossRefGoogle Scholar
  22. Brown DA, Aon MA, Frasier CR, Sloan RC, Maloney AH, Anderson EJ, O'Rourke B (2010) Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J Mol Cell Cardiol 48:673–679PubMedCrossRefGoogle Scholar
  23. Bunch TJ, Hohnloser SH, Gersh BJ (2007) Mechanisms of sudden cardiac death in myocardial infarction survivors: insights from the randomized trials of implantable cardioverter-defibrillators. Circulation 115:2451–2457PubMedCrossRefGoogle Scholar
  24. Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268:1045–1049PubMedCrossRefGoogle Scholar
  25. Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104:2149–2159PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ceconi C, Curello S, Cargnoni A, Ferrari R, Albertini A, Visioli O (1988) The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J Mol Cell Cardiol 20:5–13PubMedCrossRefGoogle Scholar
  27. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A, Tian X, Jones PP, O'Mara ML, Liu Y, Mi T, Zhang L, Bolstad J, Semeniuk L, Cheng H, Zhang J, Chen J, Tieleman DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+−triggered arrhythmias. Nat Med 20:184–192PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545PubMedCrossRefGoogle Scholar
  29. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744PubMedCrossRefGoogle Scholar
  30. Christensen NJ, Videbaek J (1974) Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest 54:278–286PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cornea RL, Nitu F, Gruber S, Kohler K, Satzer M, Thomas DD, Fruen BR (2009) FRET-based mapping of calmodulin bound to the RyR1 Ca2+ release channel. Proc Natl Acad Sci U S A 106:6128–6133PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cowburn PJ, Cleland JG, Coats AJ, Komajda M (1998) Risk stratification in chronic heart failure. Eur Heart J 19:696–710PubMedCrossRefGoogle Scholar
  33. Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758PubMedCrossRefGoogle Scholar
  34. Domeier TL, Blatter LA, Zima AV (2009) Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol 587:5197–5209PubMedPubMedCentralCrossRefGoogle Scholar
  35. Domenech RJ, Macho P, Velez D, Sanchez G, Liu X, Dhalla N (1998) Tachycardia preconditions infarct size in dogs: role of adenosine and protein kinase C. Circulation 97:786–794PubMedCrossRefGoogle Scholar
  36. Eager KR, Dulhunty AF (1998) Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol 163:9–18PubMedCrossRefGoogle Scholar
  37. Eisner DA, Trafford AW, Diaz ME, Overend CL, O'Neill SC (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38:589–604PubMedCrossRefGoogle Scholar
  38. Eisner DA, Kashimura T, Venetucci LA, Trafford AW (2009) From the ryanodine receptor to cardiac arrhythmias. Circ J 73:1561–1567PubMedCrossRefGoogle Scholar
  39. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14PubMedGoogle Scholar
  40. Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289PubMedCrossRefGoogle Scholar
  41. Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249:469–495PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922PubMedCrossRefGoogle Scholar
  44. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539PubMedPubMedCentralCrossRefGoogle Scholar
  45. Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genomics 37:175–186PubMedPubMedCentralCrossRefGoogle Scholar
  46. Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383:375–388PubMedCrossRefGoogle Scholar
  47. Gillespie D (2008) Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys J 94:1169–1184PubMedCrossRefGoogle Scholar
  48. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508PubMedPubMedCentralCrossRefGoogle Scholar
  49. Goldman YE (1987) Kinetics of the actomyosin ATPase in muscle fibers. Annu Rev Physiol 49:637–654PubMedCrossRefGoogle Scholar
  50. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM (2010) Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 285:28938–28945PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guo T, Gillespie D, Fill M (2012) Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res 111:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gyorke S, Carnes C (2008) Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 119:340–354PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128PubMedPubMedCentralCrossRefGoogle Scholar
  55. Han HM, Wei RS, Lai FA, Yin CC (2006) Molecular nature of sulfhydryl modification by hydrogen peroxide on type 1 ryanodine receptor. Acta Pharmacol Sin 27:888–894PubMedCrossRefGoogle Scholar
  56. Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122:1005–1013PubMedPubMedCentralCrossRefGoogle Scholar
  57. Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di LF, de GH, Schulz R, Heusch G (2006) Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71:374–382Google Scholar
  58. Hill MF, Singal PK (1997) Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 96:2414–2420PubMedCrossRefGoogle Scholar
  59. Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435PubMedCrossRefGoogle Scholar
  60. Houser SR, Piacentino V III, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32:1595–1607PubMedCrossRefGoogle Scholar
  61. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363PubMedCrossRefGoogle Scholar
  62. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535PubMedCrossRefGoogle Scholar
  63. Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217PubMedCrossRefGoogle Scholar
  64. Janssen PM, de Tombe PP (1997) Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol 272:H1892–H1897PubMedGoogle Scholar
  65. Kimlicka L, Lau K, Tung CC, Van PF (2013) Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat Commun 4:1506PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24PubMedGoogle Scholar
  67. Kubalova Z, Terentyev D, Viatchenko-Karpinski S, Nishijima Y, Gyorke I, Terentyeva R, da Cunha DN, Sridhar A, Feldman DS, Hamlin RL, Carnes CA, Gyorke S (2005) Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A 102:14104–14109PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kurz T, Offner B, Schreieck J, Richardt G, Tolg R, Schomig A (1995) Nonexocytotic noradrenaline release and ventricular fibrillation in ischemic rat hearts. Naunyn Schmiedebergs Arch Pharmacol 352:491–496PubMedCrossRefGoogle Scholar
  69. Lakatta EG (2004) Beyond Bowditch: the convergence of cardiac chronotropy and inotropy. Cell Calcium 35:629–642PubMedCrossRefGoogle Scholar
  70. Lameris TW, de ZS, Alberts G, Boomsma F, Duncker DJ, Verdouw PD, Veld AJ, van den Meiracker AH (2000) Time course and mechanism of myocardial catecholamine release during transient ischemia in vivo. Circulation 101:2645–2650Google Scholar
  71. Lane RE, Cowie MR, Chow AW (2005) Prediction and prevention of sudden cardiac death in heart failure. Heart 91:674–680PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93:9782–9787PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lehnart SE (2007) Novel targets for treating heart and muscle disease: stabilizing ryanodine receptors and preventing intracellular calcium leak. Curr Opin Pharmacol 7:225–232PubMedCrossRefGoogle Scholar
  74. Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106:633–646PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S, Imbriani M, Napolitano C, Lai FA, Priori SG (2006) Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res 99:292–298PubMedCrossRefGoogle Scholar
  76. Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 121:822–830PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1994) Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy. J Physiol 480(Pt 1):21–29PubMedPubMedCentralCrossRefGoogle Scholar
  78. Loyer X, Gomez AM, Milliez P, Fernandez-Velasco M, Vangheluwe P, Vinet L, Charue D, Vaudin E, Zhang W, Sainte-Marie Y, Robidel E, Marty I, Mayer B, Jaisser F, Mercadier JJ, Richard S, Shah AM, Benitah JP, Samuel JL, Heymes C (2008) Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation 117:3187–3198PubMedCrossRefGoogle Scholar
  79. Mak S, Newton GE (2001) The oxidative stress hypothesis of congestive heart failure: radical thoughts. Chest 120:2035–2046PubMedCrossRefGoogle Scholar
  80. Makaula S, Lochner A, Genade S, Sack MN, Awan MM, Opie LH (2005) H-89, a non-specific inhibitor of protein kinase A, promotes post-ischemic cardiac contractile recovery and reduces infarct size. J Cardiovasc Pharmacol 45:341–347PubMedCrossRefGoogle Scholar
  81. Makino N, Maeda T, Oyama J, Sasaki M, Higuchi Y, Mimori K, Shimizu T (2011) Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice. J Mol Cell Cardiol 50:670–677PubMedCrossRefGoogle Scholar
  82. Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11PubMedCrossRefGoogle Scholar
  83. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376PubMedCrossRefGoogle Scholar
  84. Masumiya H, Li P, Zhang L, Chen SR (2001) Ryanodine sensitizes the Ca(2+) release channel (ryanodine receptor) to Ca(2+) activation. J Biol Chem 276:39727–39735PubMedCrossRefGoogle Scholar
  85. Mazurek SR, Bovo E, Zima AV (2014) Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes. Free Radic Biol Med 68:159–167PubMedCrossRefGoogle Scholar
  86. Mead-Savery FC, Wang R, Tanna-Topan B, Chen SR, Welch W, Williams AJ (2009) Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys J 96:1374–1387PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meissner G (2004) Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium 35:621–628PubMedCrossRefGoogle Scholar
  88. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356PubMedPubMedCentralCrossRefGoogle Scholar
  89. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–RA219PubMedGoogle Scholar
  90. Mochizuki M, Yano M, Oda T, Tateishi H, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2007) Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J Am Coll Cardiol 49:1722–1732PubMedCrossRefGoogle Scholar
  91. Nabauer M, Morad M (1990) Ca2(+)-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol 258:C189–C193PubMedGoogle Scholar
  92. Nagasaka S, Katoh H, Niu CF, Matsui S, Urushida T, Satoh H, Watanabe Y, Hayashi H (2007) Protein kinase A catalytic subunit alters cardiac mitochondrial redox state and membrane potential via the formation of reactive oxygen species. Circ J 71:429–436PubMedCrossRefGoogle Scholar
  93. Nogueira L, Figueiredo-Freitas C, Casimiro-Lopes G, Magdesian MH, Assreuy J, Sorenson MM (2009) Myosin is reversibly inhibited by S-nitrosylation. Biochem J 424:221–231PubMedCrossRefGoogle Scholar
  94. Opie LH (1993) The mechanism of myocyte death in ischaemia. Eur Heart J 14 Suppl G:31–33Google Scholar
  95. Opie LH, Clusin WT (1990) Cellular mechanism for ischemic ventricular arrhythmias. Annu Rev Med 41:231–238PubMedCrossRefGoogle Scholar
  96. Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14:61–66PubMedCrossRefGoogle Scholar
  97. Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131:325–334PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610PubMedCrossRefGoogle Scholar
  99. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, Durand P, Guicheney P, Kyndt F, Leenhardt A, Le MH, Lucet V, Mabo P, Probst V, Monnier N, Ray PF, Santoni E, Tremeaux P, Lacampagne A, Faure J, Lunardi J, Marty I (2012) Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 21:2759–2767PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P (2005) Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol 39:982–991PubMedCrossRefGoogle Scholar
  101. Santiago DJ, Curran JW, Bers DM, Lederer WJ, Stern MD, Rios E, Shannon TR (2010) Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes. Biophys J 98:2111–2120PubMedPubMedCentralCrossRefGoogle Scholar
  102. Santiago DJ, Rios E, Shannon TR (2013) Isoproterenol increases the fraction of spark-dependent RyR-mediated leak in ventricular myocytes. Biophys J 104:976–985PubMedPubMedCentralCrossRefGoogle Scholar
  103. Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793PubMedPubMedCentralCrossRefGoogle Scholar
  104. Satoh H, Blatter LA, Bers DM (1997) Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol 272:H657–H668PubMedGoogle Scholar
  105. Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514PubMedCrossRefGoogle Scholar
  106. Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780PubMedCrossRefGoogle Scholar
  107. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907PubMedCrossRefGoogle Scholar
  108. Sen L, Cui G, Fonarow GC, Laks H (2000) Differences in mechanisms of SR dysfunction in ischemic vs. idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 279:H709–H718PubMedGoogle Scholar
  109. Serysheva II, Ludtke SJ, Baker ML, Cong Y, Topf M, Eramian D, Sali A, Hamilton SL, Chiu W (2008) Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci U S A 105:9610–9615PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sitsapesan R, Williams AJ (1994) Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Membr Biol 137:215–226PubMedCrossRefGoogle Scholar
  112. Slodzinski MK, Aon MA, O'Rourke B (2008) Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol 45:650–660PubMedPubMedCentralCrossRefGoogle Scholar
  113. Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84:266–275PubMedCrossRefGoogle Scholar
  114. Spear JF, Prabu SK, Galati D, Raza H, Anandatheerthavarada HK, Avadhani NG (2007) beta1-Adrenoreceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning. Am J Physiol Heart Circ Physiol 292:H2459–H2466PubMedCrossRefGoogle Scholar
  115. Stern MD (1992) Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497–517PubMedPubMedCentralCrossRefGoogle Scholar
  116. Stern MD, Cheng H (2004) Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35:591–601PubMedCrossRefGoogle Scholar
  117. Stevens SC, Terentyev D, Kalyanasundaram A, Periasamy M, Gyorke S (2009) Intra-sarcoplasmic reticulum Ca2+ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca2+ in cardiomyocytes. J Physiol 587:4863–4872PubMedPubMedCentralCrossRefGoogle Scholar
  118. Strauss JD, Wagenknecht T (2013) Structure of glutaraldehyde cross-linked ryanodine receptor. J Struct Biol 181:300–306PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163PubMedCrossRefGoogle Scholar
  121. Tang H, Viola HM, Filipovska A, Hool LC (2011) Ca(v)1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic Biol Med 51:1501–1511PubMedCrossRefGoogle Scholar
  122. Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, Gyorke S (2002) Luminal Ca2+ controls termination and refractory behavior of Ca2+−induced Ca2+ release in cardiac myocytes. Circ Res 91:414–420PubMedCrossRefGoogle Scholar
  123. Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Gyorke S (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472PubMedPubMedCentralCrossRefGoogle Scholar
  124. Townsend DM (2007) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324PubMedCrossRefGoogle Scholar
  125. Tung CC, Lobo PA, Kimlicka L, Van PF (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–588PubMedCrossRefGoogle Scholar
  126. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8PubMedCrossRefGoogle Scholar
  127. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  128. van Petegem (2015) Ryanodine receptors: allosteric ion channel giants. J Mol Biol 427:31–53Google Scholar
  129. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vanden Hoek TL, Shao Z, Li C, Zak R, Schumacker PT, Becker LB (1996) Reperfusion injury on cardiac myocytes after simulated ischemia. Am J Physiol 270:H1334–H1341PubMedGoogle Scholar
  131. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13PubMedCrossRefGoogle Scholar
  132. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70PubMedCrossRefGoogle Scholar
  133. Werns SW, Fantone JC, Ventura A, Lucchesi BR (1992) Myocardial glutathione depletion impairs recovery of isolated blood-perfused hearts after global ischaemia. J Mol Cell Cardiol 24:1215–1220PubMedCrossRefGoogle Scholar
  134. Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Ter KH, Chen SR (2006) Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem J 396:7–16PubMedPubMedCentralCrossRefGoogle Scholar
  135. Xie LH, Weiss JN (2009) Arrhythmogenic consequences of intracellular calcium waves. Am J Physiol Heart Circ Physiol 297:H997–H1002PubMedPubMedCentralCrossRefGoogle Scholar
  136. Xing D, Chaudhary AK, Miller FJ Jr, Martins JB (2009) Free radical scavenger specifically prevents ischemic focal ventricular tachycardia. Heart Rhythm 6:530–536PubMedPubMedCentralCrossRefGoogle Scholar
  137. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237PubMedCrossRefGoogle Scholar
  138. Yamawaki H, Haendeler J, Berk BC (2003) Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 93:1029–1033PubMedCrossRefGoogle Scholar
  139. Yano M (2008) Ryanodine receptor as a new therapeutic target of heart failure and lethal arrhythmia. Circ J 72:509–514PubMedCrossRefGoogle Scholar
  140. Yavuz S (2008) Surgery as early revascularization after acute myocardial infarction. Anadolu Kardiyol Derg 8(Suppl 2):84–92PubMedGoogle Scholar
  141. Zalk R, Clarke OB, des GA, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49Google Scholar
  142. Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565PubMedCrossRefGoogle Scholar
  143. Zhang J, Jin B, Li L, Block ER, Patel JM (2005) Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol 288:C840–C849PubMedCrossRefGoogle Scholar
  144. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321PubMedCrossRefGoogle Scholar
  145. Zima AV, Terentyev D (2013) Sarcoplasmic reticulum Ca homeostasis and heart failure. In: The biophysics of the failing heart. Springer, pp 5–31Google Scholar
  146. Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103:e105–e115PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zima AV, Bovo E, Bers DM, Blatter LA (2010) Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588:4743–4757PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 466:1129–1137PubMedCrossRefGoogle Scholar
  149. Zissimopoulos S, Viero C, Seidel M, Cumbes B, White J, Cheung I, Stewart R, Jeyakumar LH, Fleischer S, Mukherjee S, Thomas NL, Williams AJ, Lai FA (2013) N-terminus oligomerization regulates the function of cardiac ryanodine receptors. J Cell Sci 126:5042–5051PubMedCrossRefGoogle Scholar
  150. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190PubMedCrossRefGoogle Scholar
  151. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 84:1404–1407PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Cell and Molecular PhysiologyLoyola University Chicago, Stritch School of MedicineMaywoodUSA

Personalised recommendations