The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine

  • Diane Hooton
  • Roger LentleEmail author
  • John Monro
  • Martin Wickham
  • Robert Simpson
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 168)


Microvilli are conventionally regarded as an extension of the small intestinal absorptive surface, but they are also, as latterly discovered, a launching pad for brush border digestive enzymes. Recent work has demonstrated that motor elements of the microvillus cytoskeleton operate to displace the apical membrane toward the apex of the microvillus, where it vesiculates and is shed into the periapical space. Catalytically active brush border digestive enzymes remain incorporated within the membranes of these vesicles, which shifts the site of BB digestion from the surface of the enterocyte to the periapical space. This process enables nutrient hydrolysis to occur adjacent to the membrane in a pre-absorptive step. The characterization of BB digestive enzymes is influenced by the way in which these enzymes are anchored to the apical membranes of microvilli, their subsequent shedding in membrane vesicles, and their differing susceptibilities to cleavage from the component membranes. In addition, the presence of active intracellular components of these enzymes complicates their quantitative assay and the elucidation of their dynamics. This review summarizes the ontogeny and regulation of BB digestive enzymes and what is known of their kinetics and their action in the peripheral and axial regions of the small intestinal lumen.


Digestion Enterocyte Membrane Microvillus Vesicles 



Angiotensin-converting enzyme


Alkaline phosphatase


Aminopeptidase A


Aminopeptidase N


Aminopeptidase P


Alkaline sphingomyelinase


Brush border


Brush border membrane vesicle


Bile salt-activated lipase


Carboxypeptidase A


Carboxypeptidase B


Dipeptidase 1


Dipeptidylpeptidase IV


γ-Glutamyl transpeptidase




Lactase–phlorizin hydrolase


Meprin A subunit β




Neutral ceramidase




Sodium taurocholate


Phospholipase A2


Phospholipase B1


Pancreatic triacylglycerol lipase


Pancreatic triacylglycerol lipase


Rough endoplasmic reticulum


Soluble cytosolic





We would like to extend a special thank-you to Peter Butterworth (Kings College, London, United Kingdom) for reviewing the manuscript; Juliet Ansell, Christine Butts (Plant and Food Research, Palmerston North, New Zealand), and Kevin Sutton (Plant and Food Research, Lincoln, New Zealand) for proof reading the manuscript; Tony Corbett (Plant and Food Research, Hawkes Bay) for the graphics; and Doug Hopcroft and Jianyu Chen from the Manawatu Microscopy and Imaging Centre, Massey University, Palmerston North, for the transmission electron microscope images of the BBMV.


  1. Ahnen DJ, Santiago NA, Cezard JP, Gray GM (1982) Intestinal aminooligopeptidase – in vivo synthesis on intracellular membranes of the rat jejunum. J Biol Chem 257(20):2129–2135Google Scholar
  2. Akiba Y, Mizumori M, Guth PH, Engel E, Kaunitz JD (2007) Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol 293(6):G1223–G1233. doi: 10.1152/ajpgi.00313.2007 Google Scholar
  3. Amidon GL, Lee H (1994) Absorption of peptide and peptidomimetic drugs. Annu Rev Pharmacol Toxicol 34(1):321–341PubMedCrossRefGoogle Scholar
  4. Anderson LE, Walsh KA, Neurath H (1977) Bovine enterokinase. Purification, specificity, and some molecular properties. Biochemistry 16(15):3354–3360PubMedCrossRefGoogle Scholar
  5. Anderson R, Beyler S, Mack S, Zaneveld L (1981) Characterization of a high-molecular-weight form of human acrosin. Comparison with human pancreatic trypsin. Biochem J 199:307–316PubMedCentralPubMedCrossRefGoogle Scholar
  6. Asp NG, Dahlqvist A (1968) Rat small-intestinal β-galactosidases. Kinetic studies with three separated fractions. Biochem J 110(1):143PubMedCentralPubMedCrossRefGoogle Scholar
  7. Auricchio S, Dahlqvist A, Semenza G (1963) Solubilization of the human intestinal disaccharidases. Biochim Biophys Acta 73(4):582–587. doi: 10.1016/0926-6569(63)90178-0 PubMedCrossRefGoogle Scholar
  8. Auricchio S, Semenza G, Rubino A (1965) Multiplicity of human intestinal disaccharidases II. Characterization of the individual maltases. Biochim Biophys Acta 96(3):498–507. doi: 10.1016/0005-2787(65)90566-6 PubMedCrossRefGoogle Scholar
  9. Bagi K, Simon LM, Szajáni B (1997) Immobilization and characterization of porcine pancreas lipase. Enzyme Microb Technol 20(7):531–535CrossRefGoogle Scholar
  10. Bai JF, Amidon G (1992) Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res 9(8):969–978. doi: 10.1023/a:1015885823793 PubMedCrossRefGoogle Scholar
  11. Bargetzi J-P, Kumar KS, Cox DJ, Walsh KA, Neurath H (1963) The amino acid composition of bovine pancreatic carboxypeptidase A*. Biochemistry 2(6):1468–1474PubMedCrossRefGoogle Scholar
  12. Barinka C, Rinnová M, Šácha P, Rojas C, Majer P, Slusher BS, Konvalinka J (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem 80(3):477–487PubMedCrossRefGoogle Scholar
  13. Bartles JR, Zheng L, Li A, Wierda A, Chen B (1998) Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J Cell Biol 143(1):107–119PubMedCentralPubMedCrossRefGoogle Scholar
  14. Basson MD, Di Li G, Hong F, Han O, Sumpio BE (1996) Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J Cell Physiol 168(2):476–488. doi:10.1002/(sici)1097-4652(199608)168:2<476::aid-jcp26>;2-#PubMedCrossRefGoogle Scholar
  15. Bauer E, Jakob S, Mosenthin R (2005) Principles of physiology of lipid digestion. Asian Aust J Anim Sci 18(2):282–295CrossRefGoogle Scholar
  16. Beaulieu JF, Nichols B, Quaroni A (1989) Posttranslational regulation of sucrase-isomaltase expression in intestinal crypt and villus cells. J Biol Chem 264(33):20000–20011PubMedGoogle Scholar
  17. Beck IT (1973) The role of pancreatic enzymes in digestion. Am J Clin Nutr 26(3):311–325PubMedGoogle Scholar
  18. Becker T, Rapp W (1979) Characterization of human pepsin I obtained from purified gastric pepsinogen I. Klin Wochenschr 57(14):711–718PubMedCrossRefGoogle Scholar
  19. Beiboer SHW, Franken PA, Cox RC, Verheij HM (1995) An extended binding pocket determines the polar head group specificity of porcine pancreatic phospholipase A2. Eur J Biochem 231(3):747–753PubMedCrossRefGoogle Scholar
  20. Benajiba A, Maroux S (1980) Purification and characterization of an aminopeptidase A from hog intestinal brush-border membrane. Eur J Biochem 107(2):381–388. doi: 10.1111/j.1432-1033.1980.tb06040.x PubMedCrossRefGoogle Scholar
  21. Bennett C, Leblond G, Haddad A (1974) Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol 60:258–284PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bertenshaw GP, Turk BE, Hubbard SJ, Matters GL, Bylander JE, Crisman JM, Cantley LC, Bond JS (2001) Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem 276(16):13248–13255. doi: 10.1074/jbc.M011414200 PubMedCrossRefGoogle Scholar
  23. Bieger W, Scheele G (1980) A sensitive and specific enzyme assay for elastase activity using α-[3H]elastin as substrate. Anal Biochem 104(2):239–246PubMedCrossRefGoogle Scholar
  24. Bieth JG, Dirrig S, Jung ML, Boudier C, Papamichael E, Sakarellos C, Dimicoli JL (1989) Investigation of the active-center of rat pancreatic elastase. Biochim Biophys Acta 994(1):64–74PubMedCrossRefGoogle Scholar
  25. Biol MC, Pintori S, Mathian B, Louisot P (1991) Dietary-regulation of intestinal glycosyl-transferase activities – relation between developmental-changes and weaning in rats. J Nutr 121(1):114–125PubMedGoogle Scholar
  26. Bird R, Hopkins R (1954) The action of some α-amylases on amylose. Biochem J 56(1):86PubMedCentralPubMedCrossRefGoogle Scholar
  27. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci 77(3):1496–1500PubMedCentralPubMedCrossRefGoogle Scholar
  28. Boffelli D, Weber FE, Compassi S, Werder M, Schulthess G, Hauser H (1997) Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane. Biochemistry 36(35):10784–10792. doi: 10.1021/bi970625i PubMedCrossRefGoogle Scholar
  29. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256(4):1604–1607PubMedGoogle Scholar
  30. Borel P, Armand M, Ythier P, Dutot G, Melin C, Senft M, Lafont H, Lairon D (1994) Hydrolysis of emulsions with different triglycerides and droplet sizes by gastric lipase in vitro. Effect on pancreatic lipase activity. J Nutr Biochem 5(3):124–133CrossRefGoogle Scholar
  31. Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36(10):1521–1536. doi: 10.1172/jci103549 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Bourne G, MacKinnon M (1943) The distribution of alkaline phosphatase in various tissues. Exp Physiol 32(1):1–20CrossRefGoogle Scholar
  33. Brasitus TA, Dudeja PK (1985) Alterations in the physical state and composition of brush border membrane lipids of rat enterocytes during differentiation. Arch Biochem Biophys 240(1):483–488. doi: 10.1016/0003-9861(85)90054-2 PubMedCrossRefGoogle Scholar
  34. Brasseur JG, Banco GG, Ailiani AC, Wang Y, Neuberger T, Smith NB, Webb AG (2009) Motility and absorption in the small intestines: integrating MRI with lattice Boltzmann models. In: Biomedical imaging: from nano to macro, 2009. ISBI’09. IEEE international symposium on 2009. IEEE, pp 374–377Google Scholar
  35. Bretscher A, Weber K (1979) Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci 76(5):2321–2325PubMedCentralPubMedCrossRefGoogle Scholar
  36. Bretscher A, Weber K (1980) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol 86(1):335–340PubMedCrossRefGoogle Scholar
  37. Brown AL (1962) Microvilli of human jejunal epithelial cell. J Cell Biol 12(3):623–627. doi: 10.1083/jcb.12.3.623 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Brown PD, Sepúlveda FV (1985) A rabbit jejunal isolated enterocyte preparation suitable for transport studies. J Physiol 363(1):257–270PubMedCentralPubMedCrossRefGoogle Scholar
  39. Brownlee IA, Forster DJ, Wilcox MD, Dettmar PW, Seal CJ, Pearson JP (2010) Physiological parameters governing the action of pancreatic lipase. Nutr Res Rev 23(1):146–154. doi: 10.1017/s0954422410000028 PubMedCrossRefGoogle Scholar
  40. Büller HA, Montgomery RK, Sasak WV, Grand RJ (1987) Biosynthesis, glycosylation, and intracellular transport of intestinal lactase-phlorizin hydrolase in rat. J Biol Chem 262(35):17206–17211PubMedGoogle Scholar
  41. Bünger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJEJ, Müller M (2007) Genome-wide analysis of PPARα activation in murine small intestine. Physiol Genomics 30(2):192–204. doi: 10.1152/physiolgenomics.00198.2006 PubMedCrossRefGoogle Scholar
  42. Bunnett NW, Turner AJ, Hryszko J, Kobayashi R, Walsh JH (1988) Isolation of endopeptidase-24.11 (EC, “enkephalinase”) from the pig stomach. Hydrolysis of substance P, gastrin-releasing peptide 10, [Leu5] enkephalin, and [Met5] enkephalin. Gastroenterology 95(4):952–957PubMedGoogle Scholar
  43. Cajori F (1933) The enzyme activity of dogs intestinal juice and its relation to intestinal digestion. Am J Physiol 104(3):659–668Google Scholar
  44. Caporale C, Troncone R (1988) Isolation and characterization of an amphiphilic form of human intestinal aminopeptidase N. J Pediatr Gastroenterol Nutr 7(5):675–679PubMedCrossRefGoogle Scholar
  45. Cerneus DP, Ueffing E, Posthuma G, Strous GJ, van der Ende A (1993) Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem 268(5):3150–3155PubMedGoogle Scholar
  46. Cezard JP, Conklin KA, Das BC, Gray GM (1979) Incomplete intracellular forms of intestinal surface membrane sucrase-isomaltase. J Biol Chem 254(18):8969–8975PubMedGoogle Scholar
  47. Cezard JP, Broyart JP, Cuisiniergleizes P, Mathieu H (1983) Sucrase isomaltase regulation by dietary sucrose in the rat. Gastroenterology 84(1):18–25PubMedGoogle Scholar
  48. Chahinian H, Fantini J, Garmy N, Manco G, Sarda L (2010) Non-lipolytic and lipolytic sequence-related carboxylesterases: a comparative study of the structure–function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase. Biochim Biophys Acta Mol Cell Biol Lipids 1801(11):1195–1204CrossRefGoogle Scholar
  49. Chu S-hW, Walker WA (1986) Developmental changes in the activities of sialyl- and fucosyltransferases in rat small intestine. Biochim Biophys Acta 883(3):496–500. doi: 10.1016/0304-4165(86)90289-8 PubMedCrossRefGoogle Scholar
  50. Coates D (2003) The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol 35(6):769–773. doi: 10.1016/S1357-2725(02)00309-6 PubMedCrossRefGoogle Scholar
  51. Colbeau A, Maroux S (1978) Integration of alkaline phosphatase in the intestinal brush border membrane. Biochim Biophys Acta (BBA) Biomembr 511(1):39–51CrossRefGoogle Scholar
  52. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85. doi: 10.1016/j.addr.2008.09.008 PubMedCrossRefGoogle Scholar
  53. Cornish-Bowden A (1976) Principles of enzyme kinetics. Butler and Tanner, LondonGoogle Scholar
  54. Cowell G, Tranum-Jensen J, Sjöström H, Norén O (1986) Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem J 237(2):455PubMedCentralPubMedCrossRefGoogle Scholar
  55. Crater JS, Carrier RL (2010) Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci 10(12):1473–1483. doi: 10.1002/mabi.201000137 PubMedCrossRefGoogle Scholar
  56. Creamer B, Shorter RG, Bamforth J (1961) The turnover and shedding of epithelial cells. Gut 2(2):110–116. doi: 10.1136/gut.2.2.110 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Cu Y, Saltzman WM (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 61(2):101–114. doi: 10.1016/j.addr.2008.09.006 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Dallas Johnson K, Clark A, Marshall S (2002) A functional comparison of ovine and porcine trypsins. Comp Biochem Physiol B Biochem Mol Biol 131(3):423–431PubMedCrossRefGoogle Scholar
  59. Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384PubMedCrossRefGoogle Scholar
  60. Daniel H, Fett C, Kratz A (1989) Demonstration and modification of intervillous pH profiles in rat small intestine in vitro. Am J Physiol 257(4):G489–G495PubMedGoogle Scholar
  61. Danielsen EM (1982) Biosynthesis of intestinal microvillar proteins – pulse-chase labeling studies on aminopeptidase N and sucrase-isomaltase. Biochem J 204(3):639–645PubMedCentralPubMedCrossRefGoogle Scholar
  62. Danielsen EM (1990) Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase. Biochemistry 29(1):305–308PubMedCrossRefGoogle Scholar
  63. Danielsen EM (1992) Folding of intestinal brush border enzymes. Evidence that high-mannose glycosylation is an essential early event. Biochemistry 31(8):2266–2272. doi: 10.1021/bi00123a008 PubMedCrossRefGoogle Scholar
  64. Danielsen EM (1994) Dimeric assembly of enterocyte brush-border enzymes. Biochemistry 33(6):1599–1605. doi: 10.1021/bi00172a041 PubMedCrossRefGoogle Scholar
  65. Danielsen EM (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34(5):1596–1605. doi: 10.1021/bi00005a016 PubMedCrossRefGoogle Scholar
  66. Danielsen EM, Noren O, Sjostrom H, Ingram J, Kenny A (1980a) Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent-and proteinase-solubilized forms. Biochem J 189:591–603PubMedCentralPubMedCrossRefGoogle Scholar
  67. Danielsen EM, Vyas J, Kenny AJ (1980b) A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. Biochem J 191(2):645PubMedCentralPubMedCrossRefGoogle Scholar
  68. Danielsen E, Norén O, Sjöström H (1982) Biosynthesis of intestinal microvillar proteins. Translational evidence in vitro that aminopeptidase N is synthesized as a Mr-115000 polypeptide. Biochem J 204(1):323PubMedCentralPubMedCrossRefGoogle Scholar
  69. Danielsen E, Sjöström H, Norén O (1983) Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV. Biochem J 210(2):389PubMedCentralPubMedCrossRefGoogle Scholar
  70. Danielsen EM, Cowell GM, Noren O, Sjostrom H (1984) Biosynthesis of microvillar proteins. Biochem J 221(1):1–14PubMedCentralPubMedCrossRefGoogle Scholar
  71. de Beer EJ, Johnston CG, Wilson DW (1935) The composition of intestinal secretions. J Biol Chem 108(1):113–120Google Scholar
  72. De Caro A, Figarella C, Amic J, Michel R, Guy O (1977) Human pancreatic lipase: a glycoprotein. Biochim Biophys Acta Protein Struct 490(2):411–419CrossRefGoogle Scholar
  73. DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99(2):316–320PubMedCrossRefGoogle Scholar
  74. Doell RG, Rosen G, Kretchme N (1965) Immunochemical studies of intestinal disaccharidases during normal and precocious development. Proc Natl Acad Sci U S A 54(4):1268–1273. doi: 10.1073/pnas.54.4.1268 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Duluc I, Jost B, Freund JN (1993) Multiple levels of control of the stage- and region-specific expression of rat intestinal lactase. J Cell Biol 123(6):1577–1586. doi: 10.1083/jcb.123.6.1577 PubMedCrossRefGoogle Scholar
  76. Dutilh CE, Van Doren PJ, Verheul FEAM, De Haas GH (1975) Isolation and properties of prophosholipase A2 from Ox and sheep pancreas. Eur J Biochem 53(1):91–97CrossRefGoogle Scholar
  77. Ebata M, Miyazaki K (1967) Partial characterization of human pancreatic carboxypeptidase A. Cell Mol Life Sci 23(12):1007–1008CrossRefGoogle Scholar
  78. Engle MJ, Mahmood A, Alpers DH (1995) Two rat intestinal alkaline phosphatase isoforms with different carboxyl-terminal peptides are both membrane-bound by a glycan phosphatidylinositol linkage. J Biol Chem 270(20):11935–11940. doi: 10.1074/jbc.270.20.11935 PubMedCrossRefGoogle Scholar
  79. Erickson RH, Suzuki Y, Sedlmayer A, Song IS, Kim YS (1992) Rat intestinal angiotensin-converting enzyme: purification, properties, expression, and function. Am J Physiol 263(4):G466–G473PubMedGoogle Scholar
  80. Fan MZ, Adeola O, Asem EK (1999) Characterization of brush border membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine. J Nutr Biochem 10(5):299–305PubMedCrossRefGoogle Scholar
  81. Fan MZ, Adeola O, Asem EK, King D (2002) Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comp Biochem Physiol A Mol Integr Physiol 132(3):599–607PubMedCrossRefGoogle Scholar
  82. Farooq N, Yusufi ANK, Mahmood R (2004) Effect of fasting on enzymes of carbohydrate metabolism and brush border membrane in rat intestine. Nutr Res 24(6):407–416. doi: 10.1016/j.nutres.2004.01.004 CrossRefGoogle Scholar
  83. Feracci H, Maroux S (1980) Rabbit intestinal aminopeptidase N. Purification and molecular properties. Biochim Biophys Acta 599(2):448–463. doi: 10.1016/0005-2736(80)90190-X PubMedCrossRefGoogle Scholar
  84. Feracci H, Benajiba A, Gorvel JP, Doumeng C, Maroux S (1981) Enzymatic and immunological properties of the protease form of aminopeptidases N and A from pig and rabbit intestinal brush border. Biochim Biophys Acta 658(1):148–157. doi: 10.1016/0005-2744(81)90258-8 PubMedCrossRefGoogle Scholar
  85. Ferraris RP, Villenas SA, Diamond J (1992) Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am J Physiol 262(6):G1047–G1059PubMedGoogle Scholar
  86. Flanagan PR, Forstner GG (1979) Enzyme activity in partly dissociated fragments of rat intestinal maltase/glucoamylase. Biochem J 177(2):487PubMedCentralPubMedCrossRefGoogle Scholar
  87. Folk JE, Gladner JA (1958) Carboxypeptidase B: I. purification of the zymogen and specificity of the enzyme. J Biol Chem 231(1):379–391PubMedGoogle Scholar
  88. Frangos SG, Knox R, Yano Y, Chen E, Luozzo GD, Chen AH, Sumpio BE (2001) The integrin-mediated cyclic strain-induced signaling pathway in vascular endothelial cells. Endothelium 8(1):1–10. doi: 10.3109/10623320109063153 PubMedGoogle Scholar
  89. Furihata C, Saito D, Fujiki H, Kanai Y, Matsushima T, Sugimura T (1980) Purification and characterization of pepsinogens and a unique pepsin from rat stomach. Eur J Biochem 105(1):43–50PubMedCrossRefGoogle Scholar
  90. Galand G (1984) Purification and characterization of kidney and intestinal brush-border membrane trehalases from the rabbit. Biochim Biophys Acta Protein Struct Mol Enzymol 789(1):10–19CrossRefGoogle Scholar
  91. Galand G (1989) Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp Biochem Physiol B Comp Biochem 94(1):1–11. doi: 10.1016/0305-0491(89)90002-3 CrossRefGoogle Scholar
  92. Galand G, Forstner GG (1974a) Isolation of microvillus plasma-membranes from suckling-rat intestine – influence of premature induction of digestive enzymes by injection of cortisol acetate. Biochem J 144(2):293–302PubMedCentralPubMedCrossRefGoogle Scholar
  93. Galand G, Forstner GG (1974b) Soluble neutral and acid maltases in suckling-rat intestine – effect of cortisol and development. Biochem J 144(2):281–292PubMedCentralPubMedCrossRefGoogle Scholar
  94. Galluser M, Belkhou R, Freund J-N, Duluc I, Torp N, Danielsen M, Raul F (1991) Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function. J Comp Physiol B 161(4):357–361. doi: 10.1007/bf00260793 PubMedCrossRefGoogle Scholar
  95. Ganapathy V, Gupta N, Martindale RG (2006) Protein digestion and absorption. In: Johnson LR (ed) Physiology of the gastrointestinal tract, vol 2, 4th edn. Elsevier, USA, pp 1667–1687CrossRefGoogle Scholar
  96. Geokas MC, Largman C, Brodrick JW, Raeburn S, Rinderknecht H (1975) Human pancreatic carboxypeptidase B. I. Isolation, purification, and characterization of fraction II. Biochim Biophys Acta Enzymol 391(2):396–402CrossRefGoogle Scholar
  97. Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267(17):12168–12173PubMedGoogle Scholar
  98. Goda T (2000) Regulation of the expression of carbohydrate digestion/absorption-related genes. Br J Nutr 84:S245–S248. doi: 10.1079/096582197388626 PubMedCrossRefGoogle Scholar
  99. Goda T, Yasutake H, Suzuki Y, Takase S, Koldovsky O (1995) Diet-induced changes in gene expression of lactase in rat jejunum. Am J Physiol 268(6):G1066–G1073PubMedGoogle Scholar
  100. Götze H, Adelson JW, Hadorn HB, Portmann R, Troesch V (1972) Hormone-elicited enzyme release by the small intestinal wall. Gut 13(6):471–476. doi: 10.1136/gut.13.6.471 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Gray GM (2000) Digestion and absorption of carbohydrates. In: Stipanuk MH (ed) Biological and physiological aspects of human nutrition, vol 5. W. B. Saunders Company, USA, pp 91–106Google Scholar
  102. Gray GM, Lally BC, Conklin KA (1979) Action of intestinal sucrase-isomaltase and its free monomers on an alpha-limit dextrin. J Biol Chem 254(13):6038–6043PubMedGoogle Scholar
  103. Grünberg J, Sterchi EE (1995) Human lactase–phlorizin hydrolase: evidence of dimerization in the endoplasmic reticulum. Arch Biochem Biophys 323(2):367–372. doi: 10.1006/abbi.1995.9952 PubMedCrossRefGoogle Scholar
  104. Guan D, Yoshioka M, Erickson RH, Heizer W, Kim YS (1988) Protein digestion in human and rat small intestine: role of new neutral endopeptidases. Am J Physiol Gastroint Liver Physiol 255(2):G212–G220Google Scholar
  105. Halbhuber KJ, Schulze M, Rhode H, Bublitz R, Feuerstein H, Walter M, Linss W, Meyer HW, Horn A (1994) Is the brush-border membrane of the intestinal-mucosa a generator of chymosomes. Cell Mol Biol 40(8):1077–1096PubMedGoogle Scholar
  106. Halsted CH, E-h L, Luthi-Carter R, Villanueva JA, Gardner JM, Coyle JT (1998) Folylpoly-γ-glutamate. Carboxypeptidase from pig jejunum: molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem 273(32):20417–20424. doi: 10.1074/jbc.273.32.20417 PubMedCrossRefGoogle Scholar
  107. Hansen GH, Niels-Christiansen L-L, Immerdal L, Nystrøm BT, Danielsen EM (2007) Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption. Am J Physiol 293(6):G1325–G1332. doi: 10.1152/ajpgi.00379.2007 Google Scholar
  108. Hansen GH, Rasmussen K, Niels-Christiansen L-L, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol 297(4):G708–G715. doi: 10.1152/ajpgi.00192.2009 Google Scholar
  109. Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci 97(14):7754–7759. doi: 10.1073/pnas.140132697 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Hauri H-P, Quaroni A, Isselbacher KJ (1979) Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase—isomaltase. Proc Natl Acad Sci 76(10):5183–5186PubMedCentralPubMedCrossRefGoogle Scholar
  111. Hauri HP, Sterchi EE, Bienz D, Fransen JAM, Marxer A (1985) Expression and intracellular-transport of microvillus membrane hydrolases in human intestinal epithelial-cells. J Cell Biol 101(3):838–851PubMedCrossRefGoogle Scholar
  112. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102(12):4501–4524PubMedCrossRefGoogle Scholar
  113. Henning SJ (1981) Postnatal-development – coordination of feeding, digestion, and metabolism. Am J Physiol 241(3):G199–G214PubMedGoogle Scholar
  114. Herbst JJ, Koldovsk O (1972) Cell migration and cortisone induction of sucrase activity in jejunum and ileum. Biochem J 126(3):471–476PubMedCentralPubMedCrossRefGoogle Scholar
  115. Hernandez G, Velasco N, Wainstein C, Castillo L, Bugedo G, Maiz A, Lopez F, Guzman S, Vargas C (1999) Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care 14(2):73–77. doi: 10.1016/s0883-9441(99)90017-5 PubMedCrossRefGoogle Scholar
  116. Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118(3):1279–1286. doi: 10.1542/peds.2006-1721 PubMedCrossRefGoogle Scholar
  117. Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143(6):1485–1503. doi: 10.1083/jcb.143.6.1485 PubMedCentralPubMedCrossRefGoogle Scholar
  118. Hodin RA, Chamberlain SM, Meng S (1995) Pattern of rat intestinal brush-border enzyme gene expression changes with epithelial growth state. Am J Physiol 269(2):C385–C391PubMedGoogle Scholar
  119. Holmes R, Lobley RW (1989) Intestinal brush-border revisited. Gut 30(12):1667–1678. doi: 10.1136/gut.30.12.1667 PubMedCentralPubMedCrossRefGoogle Scholar
  120. Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC, Moroz SP, Hadorn H-B, Sadler JE, Roscher AA (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25. doi: 10.1086/338456 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Hong SS, Nakamura M, Magee DF (1967) Relationship between duodenal Ph and pancreatic secretion in dogs and pigs. Ann Surg 166(5):778–782. doi: 10.1097/00000658-196711000-00007 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Honma K, Mochizuki K, Goda T (2007) Carbohydrate/fat ratio in the diet alters histone acetylation on the sucrase–isomaltase gene and its expression in mouse small intestine. Biochem Biophys Res Commun 357(4):1124–1129. doi: 10.1016/j.bbrc.2007.04.070 PubMedCrossRefGoogle Scholar
  123. Hooper N, Keen J, Turner A (1990) Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J 265(2):429PubMedCentralPubMedCrossRefGoogle Scholar
  124. Howe CL, Mooseker MS, Graves TA (1980) Brush-border calmodulin. A major component of the isolated microvillus core. J Cell Biol 85(3):916–923. doi: 10.1083/jcb.85.3.916 PubMedCrossRefGoogle Scholar
  125. Hubner C, Lindner SG, Stern M, Claussen M, Kohlschutter A (1988) Membrane fluidity and lipid-composition of rat small intestinal brush-border membranes during postnatal maturation. Biochim Biophys Acta 939(1):145–150. doi: 10.1016/0005-2736(88)90055-7 PubMedCrossRefGoogle Scholar
  126. Hui DY, Howles PN (2002) Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 43(12):2017–2030. doi: 10.1194/jlr.R200013-JLR200 PubMedCrossRefGoogle Scholar
  127. Hui D, Hayakawa K, Oizumi J (1993) Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt-stimulated lipase). Biochem J 291:65–69PubMedCentralPubMedCrossRefGoogle Scholar
  128. Hurtley SM, Helenius A (1989) Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol 5(1):277–307PubMedCrossRefGoogle Scholar
  129. Hussain M, Tranum-Jensen J, Noren O, Sjöström H, Christiansen K (1981) Reconstitution of purified amphiphilic pig intestinal microvillus aminopeptidase. Mode of membrane insertion and morphology. Biochem J 199(1):179PubMedCentralPubMedCrossRefGoogle Scholar
  130. Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18(1):59–69CrossRefGoogle Scholar
  131. International Union of Biochemistry and Molecular Biology (2013). Accessed 2 July 2013Google Scholar
  132. Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol 296(6):E1183–E1194. doi: 10.1152/ajpendo.90899.2008 Google Scholar
  133. Itami C, Taguchi R, Ikezawa H, Nakabayashi T (1997) Release of ectoenzymes from small intestine brush border membranes of mice by phospholipases. Biosci Biotechnol Biochem 61(2):336–340PubMedCrossRefGoogle Scholar
  134. Jensen MS, Jensen SK, Jakobsen K (1997) Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J Anim Sci 75(2):437–445PubMedGoogle Scholar
  135. Kaunitz J, Wright E (1984) Kinetics of sodium-glucose cotransport in bovine intestinal brush border vesicles. J Membr Biol 79(1):41–51. doi: 10.1007/bf01868525 PubMedCrossRefGoogle Scholar
  136. Kelly JJ, Alpers DH (1973) Properties of human intestinal glucoamylase. Biochim Biophys Acta 315(1):113–122. doi: 10.1016/0005-2744(73)90135-6 PubMedCrossRefGoogle Scholar
  137. Kenny AJ, Maroux S (1982) Topology of microvillar membrane hydrolases of kidney and intestine. Physiol Rev 62(1):91–128PubMedGoogle Scholar
  138. Kenny AJ, Fulcher IS, McGill KA, Kershaw D (1983) Proteins of the kidney microvillar membrane – reconstitution of endopeptidase in liposomes shows that it is a short-stalked protein. Biochem J 211(3):755PubMedCentralPubMedCrossRefGoogle Scholar
  139. Kera Y, Liu Z, Matsumoto T, Sorimachi Y, Nagasaki H, Yamada R-h (1999) Rat and human membrane dipeptidase: tissue distribution and developmental changes. Comp Biochem Physiol B Biochem Mol Biol 123(1):53–58. doi: 10.1016/S0305-0491(99)00039-5 PubMedCrossRefGoogle Scholar
  140. Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G (1978) Modified procedure for rapid preparation of efficiently transporting vesicles from small intestinal brush-border membranes – their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta 506(1):136–154PubMedCrossRefGoogle Scholar
  141. Killian JA, von Heijne G (2000) How proteins adapt to a membrane–water interface. Trends Biochem Sci 25(9):429–434PubMedCrossRefGoogle Scholar
  142. Kim YS, Kim YW, Birtwhistle W (1972) Peptide hydrolases in brush border and soluble fractions of small intestinal-mucosa of rat and man. J Clin Invest 51(6):1419–1430PubMedCentralPubMedCrossRefGoogle Scholar
  143. Kingsley DM, Kozarsky KF, Hobble L, Krieger M (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-GalUDP-GalNAc 4-epimerase deficient mutant. Cell 44(5):749–759. doi: 10.1016/0092-8674(86)90841-X PubMedCrossRefGoogle Scholar
  144. Kolínská J, Kraml J (1972) Separation and characterization of sucrase-isomaltase and of glucoamylase of rat intestine. Biochim Biophys Acta 284(1):235–247. doi: 10.1016/0005-2744(72)90062-9 PubMedCrossRefGoogle Scholar
  145. Kozak EM, Tate SS (1982) Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 257(11):6322–6327PubMedGoogle Scholar
  146. Krasinski SD, Estrada G, Yeh KY, Yeh M, Traber PG, Rings E, Buller HA, Verhave M, Montgomery RK, Grand RJ (1994) Transcriptional regulation of intestinal hydrolase biosynthesis during postnatal-development in rats. Am J Physiol 267(4):G584–G594PubMedGoogle Scholar
  147. Lagocki JW, Law JH, Kézdy FJ (1973) The kinetic study of enzyme action on substrate monolayers: pancreatic lipase reactions. J Biol Chem 248(2):580–587PubMedGoogle Scholar
  148. Lalles JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68(6):323–332. doi: 10.1111/j.1753-4887.2010.00292.x PubMedCrossRefGoogle Scholar
  149. Largman C (1983) Isolation and characterization of rat pancreatic elastase. Biochemistry 22(16):3763–3770PubMedCrossRefGoogle Scholar
  150. Largman C, Brodrick JW, Geokas MC (1976) Purification and characterization of two human pancreatic elastases. Biochemistry 15(11):2491–2500PubMedCrossRefGoogle Scholar
  151. Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16(1):99–119PubMedCrossRefGoogle Scholar
  152. Lentle RG, Janssen PWM (2011a) Contractile activity and control of the physical process of digestion within a gut segment. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 131–164CrossRefGoogle Scholar
  153. Lentle RG, Janssen PWM (2011b) Flow, mixing and absorption at the mucosa. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 234–294CrossRefGoogle Scholar
  154. Lentle RG, Janssen PWM (2011c) Local motility, flow and mixing in tubular segments of the gut. In: Lentle RG, Janssen PWM (eds) The physical processes of digestion. Springer, New York, pp 165–199CrossRefGoogle Scholar
  155. Lentle R, Janssen P, DeLoubens C, Lim Y, Hulls C, Chambers P (2013) Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol Motil 25(11):881–e700PubMedCrossRefGoogle Scholar
  156. Light A, Janska H (1989) Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci 14(3):110–112. doi: 10.1016/0968-0004(89)90133-3 PubMedCrossRefGoogle Scholar
  157. Lim YF, Williams MAK, Lentle RG, Janssen PWM, Mansel BW, Keen SAJ, Chambers P (2013) An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula). J R Soc Interface 10(81):20121008. doi: 10.1098/rsif.2012.1008 PubMedCentralPubMedCrossRefGoogle Scholar
  158. Lindahl A, Ungell AL, Knutson L, Lennernas H (1997) Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res 14(4):497–502. doi: 10.1023/a:1012107801889 PubMedCrossRefGoogle Scholar
  159. Lingappa VR (1989) Intracellular traffic of newly synthesized proteins. Current understanding and future prospects. J Clin Invest 83(3):739PubMedCentralPubMedCrossRefGoogle Scholar
  160. Liu L, Yu Y-L, Liu C, Wang X-T, Liu X-D, Xie L (2011) Insulin deficiency induces abnormal increase in intestinal disaccharidase activities and expression under diabetic states, evidences from in vivo and in vitro study. Biochem Pharmacol 82(12):1963–1970. doi: 10.1016/j.bcp.2011.09.014 PubMedCrossRefGoogle Scholar
  161. Lojda Z (1979) Studies on dipeptidyl (amino) peptidase IV (glycyl-proline naphthylamidase). Histochemistry 59(3):153–166PubMedCrossRefGoogle Scholar
  162. Louvard D, Maroux S, Baratti J, Desnuelle P (1973) On the distribution of enterokinase in porcine intestine and on its subcellular localization. Biochim Biophys Acta 309(1):127–137. doi: 10.1016/0005-2744(73)90324-0 PubMedCrossRefGoogle Scholar
  163. Louvard D, Maroux S, Vannier C, Desneulle P (1975) Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and triton X-100. Biochim Biophys Acta 375(2):236–248. doi: 10.1016/0005-2736(75)90192-3 CrossRefGoogle Scholar
  164. Low MG (1987) Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J 244(1):1PubMedCentralPubMedCrossRefGoogle Scholar
  165. Low MG (1989) Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J 3(5):1600–1608PubMedGoogle Scholar
  166. Low M, Saltiel A (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239(4837):268–275. doi: 10.1126/science.3276003 PubMedCrossRefGoogle Scholar
  167. Lowe ME (1992) The catalytic site residues and interfacial binding of human pancreatic lipase. J Biol Chem 267(24):17069–17073PubMedGoogle Scholar
  168. Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43(12):2007–2016. doi: 10.1194/jlr.R200012-JLR200 PubMedCrossRefGoogle Scholar
  169. Lucas M (1983) Determination of acid surface pH in vivo in rat proximal jejunum. Gut 24(8):734–739. doi: 10.1136/gut.24.8.734 PubMedCentralPubMedCrossRefGoogle Scholar
  170. Lueamsaisuk C, Lentle R, MacGibbon A, Matia-Merino L, Golding M (2013) Factors influencing the dynamics of emulsion structure during neonatal gastric digestion in an in vitro model. Food Hydrocoll 36:162–172CrossRefGoogle Scholar
  171. Lundgren P, Nilsson Å, Duan R-D (2001) Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci 46(4):765–772PubMedCrossRefGoogle Scholar
  172. Macierzanka A, Rigby NM, Corfield AP, Wellner N, Bottger F, Mills ENC, Mackie AR (2011) Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7(18):8077–8084CrossRefGoogle Scholar
  173. Mackey AD, Henderson GN, Gregory JF (2002) Enzymatic hydrolysis of pyridoxine-5′-β-d-glucoside is catalyzed by intestinal lactase-phlorizin hydrolase. J Biol Chem 277(30):26858–26864. doi: 10.1074/jbc.M201774200 PubMedCrossRefGoogle Scholar
  174. Maestracci D (1976) Enzymic solubilization of the human intestinal brush border membrane enzymes. Biochim Biophys Acta 433(3):469–481. doi: 10.1016/0005-2736(76)90274-1 PubMedCrossRefGoogle Scholar
  175. Mahmood S, Dani HM, Mahmood A (1984) Effect of dietary thiamin deficiency on intestinal functions in rats. Am J Clin Nutr 40(2):226–234PubMedGoogle Scholar
  176. Maldonado-Valderrama J, Wilde P, Macierzanka A, Mackie A (2011) The role of bile salts in digestion. Adv Colloid Interf Sci 165(1):36–46. doi: 10.1016/j.cis.2010.12.002 CrossRefGoogle Scholar
  177. Mantei N, Villa M, Enzler T, Wacker H, Boll W, James P, Hunziker W, Semenza G (1988) Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J 7(9):2705PubMedCentralPubMedGoogle Scholar
  178. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci U S A 104(38):15075–15080. doi: 10.1073/pnas.0706678104 PubMedCentralPubMedCrossRefGoogle Scholar
  179. Marinkovic DV, Marinkovic JN, Erdos EG, Robinson C (1977) Purification of carboxypeptidase B from human pancreas. Biochem J 163:253–260PubMedCentralPubMedCrossRefGoogle Scholar
  180. Maroux S, Baratti J, Desnuelle P (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246(16):5031–5039PubMedGoogle Scholar
  181. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. BioEssays 24(1):91–98. doi: 10.1002/bies.10028 PubMedCrossRefGoogle Scholar
  182. Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249(2):350–354. doi: 10.1006/bbrc.1998.9151 PubMedCrossRefGoogle Scholar
  183. Matsumoto H, Erickson RH, Kim YS (1995) Localization and characterization of rat small intestinal aminopeptidase P and its role in prolyl peptide digestion. J Nutr Biochem 6(2):104–110. doi: 10.1016/0955-2863(94)00015-e CrossRefGoogle Scholar
  184. Matsuura K, Ogawa M, Kosaki G, Minamiura N, Yamamoto T (1983) Proteochemical, immunological and enzymatic properties of two amylase components from human pancreatic juice. Clin Biochem 16(4):224–228PubMedCrossRefGoogle Scholar
  185. Maze M, Gray GM (1980) Intestinal brush border aminooligopeptidases: cytosol precursors of the membrane enzyme. Biochemistry 19(11):2351–2358. doi: 10.1021/bi00552a011 PubMedCrossRefGoogle Scholar
  186. Mazer NA, Carey MC, Kwasnick RF, Benedek GB (1979) Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 18(14):3064–3075. doi: 10.1021/bi00581a024 PubMedCrossRefGoogle Scholar
  187. McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177(4):671–681. doi: 10.1083/jcb.200701144 PubMedCentralPubMedCrossRefGoogle Scholar
  188. McConnell RE, Higginbotham JN, Shifrin DA, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(7):1285–1298. doi: 10.1083/jcb.200902147 PubMedCentralPubMedCrossRefGoogle Scholar
  189. McConnell RE, Benesh AE, Mao S, Tabb DL, Tyska MJ (2011) Proteomic analysis of the enterocyte brush border. Am J Physiol 300(5):G914–G926. doi: 10.1152/ajpgi.00005.2011 Google Scholar
  190. Menashe M, Romero G, Biltonen RL, Lichtenberg D (1986) Hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by porcine pancreatic phospholipase A2. J Biol Chem 261(12):5328–5333PubMedGoogle Scholar
  191. Mer G, Hietter H, Lefèvre J-F (1996) Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nat Struct Mol Biol 3(1):45–53CrossRefGoogle Scholar
  192. Mikhailova A, Rumsh L (2000) Enteropeptidase. Appl Biochem Biotechnol 88(1–3):159–174. doi: 10.1385/abab:88:1-3:159 CrossRefGoogle Scholar
  193. Mills JN, Tang J (1967) Molecular weight and amino acid composition of human gastricsin and pepsin. J Biol Chem 242(13):3093–3097PubMedGoogle Scholar
  194. Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y (2009) Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol Lond 587(14):3651–3663. doi: 10.1113/jphysiol.2009.172270 PubMedCentralPubMedCrossRefGoogle Scholar
  195. Mochizuki K, Honma K, Shimada M, Goda T (2010) The regulation of jejunal induction of the maltase–glucoamylase gene by a high-starch/low-fat diet in mice. Mol Nutr Food Res 54(10):1445–1451. doi: 10.1002/mnfr.200900467 PubMedCrossRefGoogle Scholar
  196. Moreau H, Gargouri Y, Lecat D, Junien JL, Verger R (1988a) Purification, characterization and kinetic-properties of the rabbit gastric lipase. Biochim Biophys Acta 960(3):286–293PubMedCrossRefGoogle Scholar
  197. Moreau H, Gargouri Y, Lecat D, Junien JL, Verger R (1988b) Screening of preduodenal lipases in several mammals. Biochim Biophys Acta Lipids Lipid Metab 959(3):247–252CrossRefGoogle Scholar
  198. Morrill JS, Kwong LK, Sunshine P, Briggs GM, Castillo RO, Tsuboi KK (1989) Dietary Cho and stimulation of carbohydrases along villus column of fasted rat jejunum. Am J Physiol 256(1):G158–G165PubMedGoogle Scholar
  199. Murer H, Hopfer U, Kinne R (1976) Sodium-proton antiport in brush-border-membrane vesicles isolated from rat small-intestine and kidney. Biochem J 154(3):597–604PubMedCentralPubMedCrossRefGoogle Scholar
  200. Nachlas MM, Monis B, Rosenblatt D, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7(2):261–264. doi: 10.1083/jcb.7.2.261 PubMedCentralPubMedCrossRefGoogle Scholar
  201. Naim HY (1993) Human small-intestinal angiotensin-converting enzyme – intracellular-transport, secretion and glycosylation. Biochem J 296:607–615PubMedCentralPubMedCrossRefGoogle Scholar
  202. Naim H, Sterchi E, Lentze M (1987) Biosynthesis and maturation of lactase-phlorizin hydrolase in the human small intestinal epithelial cells. Biochem J 241(2):427PubMedCentralPubMedCrossRefGoogle Scholar
  203. Naim HY, Sterchi E, Lentze M (1988a) Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem 263(15):7242–7253PubMedGoogle Scholar
  204. Naim HY, Sterchi EE, Lentze MJ (1988b) Structure, biosynthesis, and glycosylation of human small intestinal maltase-glucoamylase. J Biol Chem 263(36):19709–19717PubMedGoogle Scholar
  205. Nakano T, Inoue I, Alpers DH, Akiba Y, Katayama S, Shinozaki R, Kaunitz JD, Ohshima S, Akita M, Takahashi S, Koyama I, Matsushita M, Komoda T (2009) Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration. Am J Physiol 297(1):G207–G214. doi: 10.1152/ajpgi.90590.2008 CrossRefGoogle Scholar
  206. Narimasa S, Tatsuo H, Mitsutaka Y, Toshio I (1979) Action of human pancreatic and salivary α-amylases on maltooligosaccharides: evaluation of kinetic parameters. Clin Chim Acta 97(2–3):253–260CrossRefGoogle Scholar
  207. Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millán JL (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23(21):7525–7530PubMedCentralPubMedCrossRefGoogle Scholar
  208. Naughton M, Sanger F (1961) Purification and specificity of pancreatic elastase. Biochem J 78(1):156PubMedCentralPubMedCrossRefGoogle Scholar
  209. Nichols BL, Avery S, Sen P, Swallow DM, Hahn D, Sterchi E (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci 100(3):1432–1437PubMedCentralPubMedCrossRefGoogle Scholar
  210. Nordström C (1972) Enzymic release of enteropeptidase from isolated rat duodenal brush borders. Biochim Biophys Acta 268(3):711–718. doi: 10.1016/0005-2744(72)90275-6 PubMedCrossRefGoogle Scholar
  211. Norén O, Sjöström H, Cowell GM, Tranum-Jensen J, Hansen OC, Welinder KG (1986) Pig intestinal microvillar maltase-glucoamylase. Structure and membrane insertion. J Biol Chem 261(26):12306–12309PubMedGoogle Scholar
  212. Norris DA, Sinko PJ (1997) Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 63(11):1481–1492. doi: 10.1002/(sici)1097-4628(19970314)63:11<1481::aid-app10>;2-5 CrossRefGoogle Scholar
  213. Norris DA, Puri N, Sinko PJ (1998) The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34(2–3):135–154. doi: 10.1016/s0169-409x(98)00037-4 PubMedCrossRefGoogle Scholar
  214. Oesterreicher TJ, Nanthakumar NN, Winston JH, Henning SJ (1998) Rat trehalase: cDNA cloning and mRNA expression in adult rat tissues and during intestinal ontogeny. Am J Physiol 274(5):R1220–R1227PubMedGoogle Scholar
  215. Ohlsson L, Palmberg C, Duan R-D, Olsson M, Bergman T, Nilsson Å (2007) Purification and characterization of human intestinal neutral ceramidase. Biochimie 89(8):950–960. doi: 10.1016/j.biochi.2007.03.009 PubMedCrossRefGoogle Scholar
  216. Ohlsson K, Tegner H (1973) Anionic and cationic dog trypsin. Isolation and partial characterization. Biochim Biophys Acta Protein Struct 317(2):328–337CrossRefGoogle Scholar
  217. Ohsawa K, Ohshima H (1984) Electrophoretic mobility and isoelectric point of purified brush border membrane vesicles. Electrophoresis 5(3):148–154CrossRefGoogle Scholar
  218. Olsson M, Duan RD, Ohlsson L, Nilsson A (2004) Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol 287(4):G929–G937. doi: 10.1152/ajpgi.00155.2004 Google Scholar
  219. Outzen H, Berglund GI, Smalås AO, Willassen NP (1996) Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B Biochem Mol Biol 115(1):33–45PubMedCrossRefGoogle Scholar
  220. Pappenheimer JR (1993) On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiol 265(3):G409–G417PubMedGoogle Scholar
  221. Pappenheimer JR (2001) Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J Membr Biol 179(3):185–204. doi: 10.1007/s002320010047 PubMedCrossRefGoogle Scholar
  222. Pappenheimer J, Reiss K (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100(1):123–136. doi: 10.1007/bf02209145 PubMedCrossRefGoogle Scholar
  223. Pappenheimer JR, Karnovsky ML, Maggio JE (1997) Absorption and excretion of undegradable peptides: role of lipid solubility and net charge. J Pharmacol Exp Ther 280(1):292–300PubMedGoogle Scholar
  224. Pégorier J-P, May CL, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134(9):2444S–2449SPubMedGoogle Scholar
  225. Perevucnik G, Schurtenberger P, Lasic DD, Hauser H (1985) Size analysis of biological membrane-vesicles by gel-filtration, dynamic light-scattering and electron-microscopy. Biochim Biophys Acta 821(1):169–173. doi: 10.1016/0005-2736(85)90168-3 PubMedCrossRefGoogle Scholar
  226. Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4(3):337–360PubMedCentralPubMedCrossRefGoogle Scholar
  227. Peterson LM, Sokolovsky M, Vallee BL (1976) Purification and crystallization of human carboxypeptidase A. Biochemistry 15(12):2501–2508PubMedCrossRefGoogle Scholar
  228. Piper D, Fenton BH (1965) pH stability and activity curves of pepsin with special reference to their clinical importance. Gut 6(5):506–508PubMedCentralPubMedCrossRefGoogle Scholar
  229. Poelstra K, Bakker WW, Klok PA, Kamps J, Hardonk MJ, Meijer D (1997) Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 151(4):1163PubMedCentralPubMedGoogle Scholar
  230. Pohl P, Saparov SM, Antonenko YN (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75(3):1403–1409. doi: 10.1016/s0006-3495(98)74058-5 PubMedCentralPubMedCrossRefGoogle Scholar
  231. Prodanov E, Seigner C, Marchis-Mouren G (1984) Subsite profile of the active center of porcine pancreatic α-amylase. Kinetic studies using maltooligosaccharides as substrates. Biochem Biophys Res Commun 122(1):75–81PubMedCrossRefGoogle Scholar
  232. Quesada-Calvillo R, Robayo CC, Nichols BL (2006) Carbohydrate digestion and absorption. In: Stipanuk MH (ed) Biochemical, physiological, molecular aspects of human nutrition, 2nd edn. Saunders/Elsevier, USA, pp 151–166Google Scholar
  233. Ranaldi S, Vr B, Woudstra M, Rodriguez J, Guigliarelli B, Sturgis J, Carriere F, Fournel A (2008) Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR and FTIR spectroscopy. Biochemistry 48(3):630–638CrossRefGoogle Scholar
  234. Raul F, Noriega R, Nsi-Emvo E, Doffoel M, Grenier JF (1983) Lactase activity is under hormonal control in the intestine of adult rat. Gut 24(7):648–652. doi: 10.1136/gut.24.7.648 PubMedCentralPubMedCrossRefGoogle Scholar
  235. Raul F, Goda T, Gosse F, Koldovsky O (1987) Short-term effect of a high-protein low-carbohydrate diet on aminopeptidase in adult-rat jejunoileum – site of aminopeptidase response. Biochem J 247(2):401–405PubMedCentralPubMedCrossRefGoogle Scholar
  236. Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40(D1):D343–D350PubMedCentralPubMedCrossRefGoogle Scholar
  237. Reisenauer AM, Lee EA, Castillo RO (1992) Ontogeny of membrane and soluble amino-oligopeptidases in rat intestine. Am J Physiol 262(1):G178–G184PubMedGoogle Scholar
  238. Ren L, Cao X, Geng P, Bai F, Bai G (2011) Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors. Carbohydr Res 346(17):2688–2692. doi: 10.1016/j.carres.2011.09.012 PubMedCrossRefGoogle Scholar
  239. Riby J, Galand G (1985) Rat intestinal brush border membrane trehalase: some properties of the purified enzyme. Comp Biochem Physiol B Comp Biochem 82(4):821–827. doi: 10.1016/0305-0491(85)90530-9 CrossRefGoogle Scholar
  240. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51. doi: 10.1042/bj20040634 PubMedCentralPubMedCrossRefGoogle Scholar
  241. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898. doi: 10.1016/S0278-6915(02)00011-X PubMedCrossRefGoogle Scholar
  242. Rigtrup KM, Kakkad B, Ong DE (1994) Purification and partial characterization of a retinyl ester hydrolase from the brush border of rat small intestine mucosa: probable identity with brush border phospholipase B. Biochemistry 33(9):2661–2666. doi: 10.1021/bi00175a039 PubMedCrossRefGoogle Scholar
  243. Rivera-Sagredo A, Canada FJ, Nieto O, Jimenez-Barbero J, Martin-Lomas M (1992) Substrate specificity of small-intestinal lactase – assessment of the role of the substrate hydroxyl groups. Eur J Biochem 209(1):415–422PubMedCrossRefGoogle Scholar
  244. Robyt JF, Chittenden CG, Lee CT (1971) Structure and function of amylases: I. The subunit structure of porcine pancreatic α-amylase. Arch Biochem Biophys 144(1):160–167PubMedCrossRefGoogle Scholar
  245. Rodriguez IR, Taravel FR, Whelan WJ (1984) Characterization and function of pig intestinal sucrase-isomaltase and its separate subunits. Eur J Biochem 143(3):575–582. doi: 10.1111/j.1432-1033.1984.tb08408.x PubMedCrossRefGoogle Scholar
  246. Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355(6359):409PubMedCrossRefGoogle Scholar
  247. Roubaty C, Portmann P (1988) Relation between intestinal alkaline-phosphatase activity and brush-border membrane-transport of inorganic-phosphate, D-glucose, and D-glucose-6-phosphate. Pflugers Arch 412(5):482–490. doi: 10.1007/bf00582536 PubMedCrossRefGoogle Scholar
  248. Ruf J, Wacker H, James P, Maffia M, Seiler P, Galand G, von Kieckebusch A, Semenza G, Matei N (1990) Rabbit small intestinal trehalase. Purification, cDNA cloning, expression, and verification of glycosylphosphatidylinositol anchoring. J Biol Chem 265(25):15034–15039PubMedGoogle Scholar
  249. Saito M, Murakami E, Suda M (1976) Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake. Biochim Biophys Acta 421(1):177–179. doi: 10.1016/0304-4165(76)90181-1 PubMedCrossRefGoogle Scholar
  250. Sakuma S, Sagawa T, Masaoka Y, Kataoka M, Yamashita S, Shirasaka Y, Tamai I, Ikumi Y, Kida T, Akashi M (2009) Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid). J Control Release 133(2):125–131. doi: 10.1016/j.jconrel.2008.09.087 PubMedCrossRefGoogle Scholar
  251. Sandermann H (1982) Lipid-dependent membrane enzymes. Eur J Biochem 127(1):123–128. doi: 10.1111/j.1432-1033.1982.tb06845.x PubMedCrossRefGoogle Scholar
  252. Sasajima K, Kawachi T, Sato S, Sugimura T (1975) Purification and properties of α, α-trehalase from the mucosa of rat small intestine. Biochim Biophys Acta 403(1):139–146. doi: 10.1016/0005-2744(75)90017-0 PubMedCrossRefGoogle Scholar
  253. Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK (1973) Purification of the human intestinal brush border membrane. Biochim Biophys Acta 323(1):98–112. doi: 10.1016/0005-2736(73)90434-3 PubMedCrossRefGoogle Scholar
  254. Schwarz SM, Ling S, Hostetler B, Draper JP, Watkins JB (1984) Lipid-composition and membrane fluidity in the small-intestine of the developing rabbit. Gastroenterology 86(6):1544–1551PubMedGoogle Scholar
  255. Schwert GW, Takenaka Y (1955) A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta 16:570–575PubMedCrossRefGoogle Scholar
  256. Seetharam B, Yeh KY, Moog F, Alpers DH (1977) Development of intestinal brush-border membrane proteins in the rat. Biochim Biophys Acta 470(3):424–436. doi: 10.1016/0005-2736(77)90133-x PubMedCrossRefGoogle Scholar
  257. Seetharam B, Yeh KY, Alpers DH (1980) Turnover of intestinal brush-border proteins during postnatal development in rat. Am J Physiol 239(6):G524–G531PubMedGoogle Scholar
  258. Semenza G (1986) Anchoring and biosynthesis of stalked brush-border membrane-proteins – glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2:255–313. doi: 10.1146/annurev.cb.02.110186.001351 PubMedCrossRefGoogle Scholar
  259. Shirazi-Beechey SP, Moran AW, Batchelor DJ, Daly K, Al-Rammahi M (2011) Glucose sensing and signalling; regulation of intestinal glucose transport. Proc Nutr Soc 70(2):185–193. doi: 10.1017/s0029665111000103 PubMedCrossRefGoogle Scholar
  260. Sigrist H, Ronner P, Semenza G (1975) A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Biochim Biophys Acta 406(3):433–446. doi: 10.1016/0005-2736(75)90022-x PubMedCrossRefGoogle Scholar
  261. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR (2008) Human intestinal maltase–glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375(3):782–792. doi: 10.1016/j.jmb.2007.10.069 PubMedCrossRefGoogle Scholar
  262. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285(23):17763–17770. doi: 10.1074/jbc.M109.078980 PubMedCentralPubMedCrossRefGoogle Scholar
  263. Sjöström H, Norén O, Jeppesen L, Staun M, Svensson B, Christiansen L (1978) Purification of different amphiphilic forms of a microvillus aminopeptidase from Pig small intestine using immunoadsorbent chromatography. Eur J Biochem 88(2):503–511. doi: 10.1111/j.1432-1033.1978.tb12476.x PubMedCrossRefGoogle Scholar
  264. Sjöström H, Norén O, Christiansen L, Wacker H, Semenza G (1980) A fully active, two-active-site, single-chain sucrase. isomaltase from pig small intestine. Implications for the biosynthesis of a mammalian integral stalked membrane protein. J Biol Chem 255(23):11332–11338PubMedGoogle Scholar
  265. Skovbjerg H (1981) Immunoelectrophoretic studies on human small intestinal brush border proteins – the longitudinal distribution of peptidases and disaccharidases. Clin Chim Acta 112(2):205–212. doi: 10.1016/0009-8981(81)90379-x PubMedCrossRefGoogle Scholar
  266. Skovbjerg H, Michael Danielsen E, Noren O, Sjöström H (1984) Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursor. Biochim Biophys Acta Genl Subj 798(2):247–251CrossRefGoogle Scholar
  267. Skovbjerg H, Sjöström H, Noren O (1981) Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem 114(3):653–661PubMedCrossRefGoogle Scholar
  268. Snider MD, Robbins PW (1982) Transmembrane organization of protein glycosylation. Mature oligosaccharide-lipid is located on the luminal side of microsomes from Chinese hamster ovary cells. J Biol Chem 257(12):6796–6801PubMedGoogle Scholar
  269. Sonoyama K, Kiriyama S, Niki R (1994) Effect of dietary protein level on intestinal aminopeptidase activity and mRNA level in rats. J Nutr Biochem 5(6):291–297. doi: 10.1016/0955-2863(94)90034-5 CrossRefGoogle Scholar
  270. Sorensen SH, Noren O, Sjostrom H, Danielsen EM (1982) Amphiphilic pig intestinal microvillus maltase/glucoamylase. Eur J Biochem 126(3):559–568. doi: 10.1111/j.1432-1033.1982.tb06817.x PubMedCrossRefGoogle Scholar
  271. Spencer AU, Sun X, El-Sawaf M, Haxhija EQ, Brei D, Luntz J, Yang H, Teitelbaum DH (2006) Enterogenesis in a clinically feasible model of mechanical small-bowel lengthening. Surgery 140(2):212–220. doi: 10.1016/j.surg.2006.03.005 PubMedCentralPubMedCrossRefGoogle Scholar
  272. Spilburg CA, Bethune JL, Vallee BL (1977) Kinetic properties of crystalline enzymes. Carboxypeptidase A. Biochemistry 16(6):1142–1150. doi: 10.1021/bi00625a018 PubMedCrossRefGoogle Scholar
  273. Stahmann MA, Fruton JS, Bergmann M (1946) The specificity of carboxypeptidase. J Biol Chem 164(2):753–760PubMedGoogle Scholar
  274. Stevens BR (2006) Digestion and absorption of protein. In: Stipanuk MH (ed) Biochemical, physiological, molecular aspects of human digestion. Saunders/Elsevier, St Louis, pp 200–218Google Scholar
  275. Stevenson NR, Ferrigni F, Parnicky K, Day S, Fierstein JS (1975) Effect of changes in feeding schedule on the diurnal rhythms and daily activity levels of intestinal brush border enzymes and transport systems. Biochim Biophys Acta 406(1):131–145. doi: 10.1016/0005-2736(75)90048-6 PubMedCrossRefGoogle Scholar
  276. Stiefel DJ, Keller PJ (1973) Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochim Biophys Acta 302(2):345–361. doi: 10.1016/0005-2744(73)90163-0 PubMedCrossRefGoogle Scholar
  277. Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27(1–2):57–92. doi: 10.3109/10409239209082559 PubMedCrossRefGoogle Scholar
  278. Suh E, Chen L, Taylor J, Traber PG (1994) A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 14(11):7340–7351. doi: 10.1128/mcb.14.11.7340 PubMedCentralPubMedCrossRefGoogle Scholar
  279. Svensson B, Danielsen M, Staun M, Jeppesen L, Norén O, Sjöström H (1978) An amphiphilic form of dipeptidyl peptidase IV from pig small-intestinal brush-border membrane. Eur J Biochem 90(3):489–498PubMedCrossRefGoogle Scholar
  280. Takemori H, Zolotaryov FN, Ting L, Urbain T, Komatsubara T, Hatano O, Okamoto M, Tojo H (1998) Identification of functional domains of rat intestinal phospholipase B/lipase: its cDNA cloning, expression, and tissue distribution. J Biol Chem 273(4):2222–2231. doi: 10.1074/jbc.273.4.2222 PubMedCrossRefGoogle Scholar
  281. Tanaka T, Kishi K, Igawa M, Takase S, Goda T (1998) Dietary carbohydrates enhance lactase/phlorizin hydrolase gene expression at a transcription level in rat jejunum. Biochem J 331:225–230PubMedCentralPubMedCrossRefGoogle Scholar
  282. Tanaka T, Suzuki A, Kuranuki S, Mochizuki K, Suruga K, Takase S, Goda T (2008) Higher expression of jejunal LPH gene in rats fed the high-carbohydrate/low-fat diet compared with those fed the low-carbohydrate/high-fat diet is associated with in vitro binding of Cdx-2 in nuclear proteins to its promoter regions. Life Sci 83(3–4):122–127. doi: 10.1016/j.lfs.2008.05.007 PubMedCrossRefGoogle Scholar
  283. Tang J, Sepulveda P, Marciniszyn J, Chen KCS, Huang W-Y, Tao N, Liu D, Lanier JP (1973) Amino-acid sequence of porcine pepsin. Proc Natl Acad Sci 70(12):3437–3439PubMedCentralPubMedCrossRefGoogle Scholar
  284. Tarvid I (1991) Early postnatal-development of peptide hydrolysis in chicks and guinea-pigs. Comp Biochem Physiol A Physiol 99(3):441–447. doi: 10.1016/0300-9629(91)90030-g CrossRefGoogle Scholar
  285. The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198PubMedCentralCrossRefGoogle Scholar
  286. Timofeeva NM, Gordova LA, Egorova VV, Iezuitova NN, Nikitina AA (2002) Membranous and soluble forms of intestinal enzymes in rat pups, whose mothers were kept on a low-protein diet during pregnancy or lactation. J Evol Biochem Physiol 38(2):189–197. doi: 10.1023/a:1016510505169 CrossRefGoogle Scholar
  287. Tiruppathi C, Balasubramania KA (1982) Purification and properties of an acid lipase from human gastric juice. Biochim Biophys Acta Lipids Lipid Metab 712(3):692–697CrossRefGoogle Scholar
  288. Tojo H, Ichida T, Okamoto M (1998) Purification and characterization of a catalytic domain of rat intestinal phospholipase B/lipase associated with brush border membranes. J Biol Chem 273(4):2214–2221PubMedCrossRefGoogle Scholar
  289. Tsai PM, Duggan C (2005) Malabsorption syndromes. In: Caballero B (ed) Encyclopedia of human nutrition, 2nd edn. Elsevier, Oxford, pp 196–203. doi: 10.1016/b0-12-226694-3/00197-6 CrossRefGoogle Scholar
  290. Tso PP, Crissinger K (2006) Overview of digestion and absorption. In: Stipanuk MH (ed) Biochemical, and molecular aspects of human nutrition, 2nd edn. Saunders/Elsevier, USA, pp 151–166Google Scholar
  291. Tsuboi KK, Kwong LK, Yamada K, Sunshine P, Koldovsky O (1985) Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding. Am J Physiol 249(4):G510–G518PubMedGoogle Scholar
  292. Tyska MJ, Mackey AT, Huang J-D, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16(5):2443–2457. doi: 10.1091/mbc.E04-12-1116 PubMedCentralPubMedCrossRefGoogle Scholar
  293. Van Beers EH, Buller HA, Grand RJ, Einerhand AWC, Dekker J (1995) Intestinal brush-border glycohydrolases – structure, function and development. Crit Rev Biochem Mol Biol 30(3):197–262PubMedCrossRefGoogle Scholar
  294. van der Burg-Koorevaar MCD, Miret S, Duchateau GSMJE (2011) Effect of milk and brewing method on black tea catechin bioaccessibility. J Agric Food Chem 59(14):7752–7758. doi: 10.1021/jf2015232 PubMedCrossRefGoogle Scholar
  295. Vandermeers A, Vandermeers-Piret MC, Rathé J, Christophe J (1974) On human pancreatic triacylglycerol lipase: Isolation and some properties. Biochim Biophys Acta Enzymol 370(1):257–268CrossRefGoogle Scholar
  296. Vaňková H, Pospíšilová M, Tichá M, Turková J (1994) Stabilization of trypsin by glycosylation. Biotechnol Tech 8(6):375–380. doi: 10.1007/bf00154306 CrossRefGoogle Scholar
  297. Van Oort MG, Dijkman R, Hille JDR, De Haas GH (1985) Kinetic behavior of porcine pancreatic phospholipase A2 on zwitterionic and negatively charged single-chain substrates. Biochemistry 24(27):7987–7993PubMedCrossRefGoogle Scholar
  298. Vasseur M, Tellier C, Alvarado F (1982) Sodium-dependent activation of intestinal brush-border sucrase: correlation with activation by deprotonation from pH 5 to 7. Arch Biochem Biophys 218(1):263–274. doi: 10.1016/0003-9861(82)90345-9 PubMedCrossRefGoogle Scholar
  299. Vesper H, Schmelz E-M, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129(7):1239–1250PubMedGoogle Scholar
  300. Voynick IM, Fruton JS (1971) The comparative specificity of acid proteinases. Proc Natl Acad Sci 68(2):257–259PubMedCentralPubMedCrossRefGoogle Scholar
  301. Wakim J, Robinson M, Thoma JA (1969) The active site of porcine-pancreatic alpha-amylase: factors contributing to catalysis. Carbohydr Res 10(4):487–503CrossRefGoogle Scholar
  302. Wang C-S, Hartsuck JA (1993) Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta 1166(1):1–19PubMedCrossRefGoogle Scholar
  303. Watanabe T, Kera Y, Matsumoto T, Yamada R-h (1996) Purification and kinetic properties of a d-amino-acid peptide hydrolyzing enzyme from pig kidney cortex and its tentative identification with renal membrane dipeptidase. Biochim Biophys Acta 1298(1):109–118. doi: 10.1016/S0167-4838(96)00126-4 PubMedCrossRefGoogle Scholar
  304. Watson W, Tuckerman J (1971) Effect of thyroid status on intestinal alkaline phosphatase levels in the rat. Endocrinology 88(6):1524PubMedCrossRefGoogle Scholar
  305. Wehrmüller K (2008) Impact of dietary phospholipids on human health. ALP Sci (Switzerland)Google Scholar
  306. Weiser MM (1973a) Intestinal epithelial-cell surface membrane glycoprotein synthesis.1. Indicator of cellular differentiation. J Biol Chem 248(7):2536–2541PubMedGoogle Scholar
  307. Weiser MM (1973b) Intestinal epithelial cell surface membrane glycoprotein synthesis. J Biol Chem 248(7):2542–2548PubMedGoogle Scholar
  308. White SH, Wimley WC (1998) Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1376(3):339–352PubMedCrossRefGoogle Scholar
  309. Williams R, Beck F (1969) A histochemical study of gut maturation. J Anat 105(Pt 3):487PubMedCentralPubMedGoogle Scholar
  310. Wistrand PJ, Kinne R (1977) Carbonic-anhydrase activity of isolated brush-border and basal-lateral membranes of renal tubular cells. Pflugers Arch 370(2):121–126. doi: 10.1007/bf00581684 PubMedCrossRefGoogle Scholar
  311. Wojtczak L, NaŁĘCz MJ (1979) Surface charge of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem 94(1):99–107. doi: 10.1111/j.1432-1033.1979.tb12876.x PubMedCrossRefGoogle Scholar
  312. Yoshioka M, Erickson RH, Woodley JF, Gulli R, Guan D, Kim YS (1987) Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am J Physiol 253(6):G781–G786PubMedGoogle Scholar
  313. Yoshioka M, Erickson RH, Kim YS (1988) Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. Role of the combined action of angiotensin-converting enzyme and carboxypeptidase P. J Clin Invest 81(4):1090PubMedCentralPubMedCrossRefGoogle Scholar
  314. Young GP, Das L (1990) Influence of duodenal secretions and its components on release and activities of human brush-border enzymes. Biochim Biophys Acta 1022(3):393–400. doi: 10.1016/0005-2736(90)90290-5 PubMedCrossRefGoogle Scholar
  315. Zakowski JJ, Bruns DE (1985) Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci 21(4):283–322PubMedCrossRefGoogle Scholar
  316. Zecca L, Mesonero JE, Stutz A, Poirée J-C, Giudicelli J, Cursio R, Gloor SM, Semenza G (1998) Intestinal lactase-phlorizin hydrolase (LPH): the two catalytic sites; the role of the pancreas in pro-LPH maturation. FEBS Lett 435(2–3):225–228. doi: 10.1016/s0014-5793(98)01076-x PubMedCrossRefGoogle Scholar
  317. Zhou F, Schulten K (1996) Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins 25(1):12–27. doi: 10.1002/(SICI)1097-0134(199605)25:1<12::AID-PROT2>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  318. Zimmerman M, Ashe BM (1977) Substrate specificity of the elastase and the chymotrypsin-like enzyme of the human granulocyte. Biochim Biophys Acta Enzymol 480(1):241–245CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Diane Hooton
    • 1
    • 2
  • Roger Lentle
    • 1
    Email author
  • John Monro
    • 2
  • Martin Wickham
    • 3
  • Robert Simpson
    • 2
  1. 1.Institute of Food Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand
  2. 2.The New Zealand Institute for Plant & Food Research Limited, Food Industry Science CentrePalmerston NorthNew Zealand
  3. 3.Reacta Biotech LimitedManchesterUK

Personalised recommendations