Properties of the Urothelium that Establish the Blood–Urine Barrier and Their Implications for Drug Delivery

  • Eva Lasič
  • Tanja Višnjar
  • Mateja Erdani KreftEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 168)


The primary function of the urinary bladder is to store and periodically release urine. How the urothelium prevents permeation of water, ions, solutes, and noxious agents back into the bloodstream and underlying tissues as well as serving as a sensor and transducer of physiological and nociceptive stimuli is still not completely understood, and thus its unique functional complexity remains to be fully elucidated. This article reviews the permeation routes across urothelium as demonstrated in extensive morphological and electrophysiological studies on in vivo and in vitro urothelia. We consider the molecular and morphological structures of urothelium and how they contribute to the impermeability of the blood–urine barrier. Based on the available data, the extremely low permeability properties of urothelium can be postulated. This remarkable impermeability is necessary for the normal functioning of all mammals, but at the same time represents limitations regarding the uptake of drugs. Therefore, the current progress to overcome this most resilient barrier in our body for drug therapy purposes is also summarized in this review.


Blood–urine barrier Drug delivery Paracellular transport Permeability properties Transcellular transport Transepithelial electrical resistance Uroplakins Urothelium 



The study was supported by the Slovenian Research Agency (Grant No. P3-0108). The authors thank Professor Dr. Tung-Tien Sun (New York University Medical School) for his generous gift of uroplakin (anti-AUM) antibodies, Dr. Tina Cirman (Blood Transfusion Centre of Slovenia, Ljubljana) for preparing amniotic membranes, and finally various colleagues from the Medical Faculty of the University of Ljubljana for useful discussions.


  1. Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G (2004) Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, −8, and −12 in bladder epithelium. Am J Physiol Renal Physiol 287:F305–F318. doi: 10.1152/ajprenal.00341.2003 PubMedCrossRefGoogle Scholar
  2. Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 300:G1054–G1064. doi: 10.1152/ajpgi.00055.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976PubMedCrossRefGoogle Scholar
  4. Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130PubMedGoogle Scholar
  5. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584. doi: 10.1101/cshperspect.a002584 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Angelow S, Ahlstrom R, Yu AS (2008) Biology of claudins. Am J Physiol Renal Physiol 295:F867–F876. doi: 10.1152/ajprenal.90264.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Apodaca G (2004) The uroepithelium: not just a passive barrier. Traffic 5:117–128. doi: 10.1046/j.1600-0854.2003.00156.x PubMedCrossRefGoogle Scholar
  8. Araki I, Du S, Kobayashi H, Sawada N, Mochizuki T, Zakoji H, Takeda M (2008) Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int J Urol 15:681–687. doi: 10.1111/j.1442-2042.2008.02052.x PubMedCrossRefGoogle Scholar
  9. Awsare NS, Martin TA, Haynes MD, Matthews PN, Jiang WG (2011) Claudin-11 decreases the invasiveness of bladder cancer cells. Oncol Rep 25:1503–1509. doi: 10.3892/or.2011.1244 PubMedGoogle Scholar
  10. Balkovetz DF (2006) Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability. Am J Physiol Renal Physiol 290:F572–F579. doi: 10.1152/ajprenal.00135.2005 PubMedCrossRefGoogle Scholar
  11. Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289:F489–F495. doi: 10.1152/ajprenal.00467.2004 PubMedCrossRefGoogle Scholar
  12. Birder LA (2010) Urothelial signaling. Auton Neurosci 153:33–40. doi: 10.1016/j.autneu.2009.07.005 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bongiovanni GA, Eynard AR, Calderon RO (2005) Altered lipid profile and changes in uroplakin properties of rat urothelial plasma membrane with diets of different lipid composition. Mol Cell Biochem 271:69–75PubMedCrossRefGoogle Scholar
  14. Boudes M, Uvin P, Pinto S et al (2013) Crucial role of TRPC1 and TRPC4 in cystitis-induced neuronal sprouting and bladder overactivity. PLoS One 8:e69550. doi: 10.1371/journal.pone.0069550 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62PubMedCentralPubMedCrossRefGoogle Scholar
  16. Capurro C, Escobar E, Ibarra C, Porta M, Parisi M (1989) Water permeability in different epithelial barriers. Biol Cell 66:145–148PubMedCrossRefGoogle Scholar
  17. Chang A, Hammond TG, Sun TT, Zeidel ML (1994) Permeability properties of the mammalian bladder apical membrane. Am J Physiol 267:C1483–C1492PubMedGoogle Scholar
  18. Chen C-H, Wu Y-J, Chang H-S, Chen W-C, Chen J-J (2010) Photothermal therapy of urothelial cancer using anti-EGFR/au nanoparticles. In: Lim CT, Goh JCH (eds) 6th World congress of biomechanics (WCB 2010). August 1–6, 2010 Singapore. Springer, Berlin Heidelberg, pp 1185–1188Google Scholar
  19. Cheng L, Davison DD, Adams J, Lopez-Beltran A, Wang L, Montironi R, Zhang S (2014) Biomarkers in bladder cancer: translational and clinical implications. Crit Rev Oncol Hematol 89:73–111. doi: 10.1016/j.critrevonc.2013.08.008 PubMedCrossRefGoogle Scholar
  20. Chinet T, Fouassier L, Dray-Charier N et al (1999) Regulation of electrogenic anion secretion in normal and cystic fibrosis gallbladder mucosa. Hepatology 29:5–13. doi: 10.1002/hep.510290142 PubMedCrossRefGoogle Scholar
  21. Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39:219–232PubMedCrossRefGoogle Scholar
  22. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol 58:390–400PubMedCentralPubMedCrossRefGoogle Scholar
  23. Clausen C, Lewis SA, Diamond JM (1979) Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J 26:291–317PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cross WR, Eardley I, Leese HJ, Southgate J (2005) A biomimetic tissue from cultured normal human urothelial cells: analysis of physiological function. Am J Physiol Renal Physiol 289:F459–F468. doi: 10.1152/ajprenal.00040.2005 PubMedCrossRefGoogle Scholar
  25. Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32:242–250. doi: 10.1128/MCB. 06029-11 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Desalle R, Chicote JU, Sun TT, Garcia-España A (2014) Generation of divergent uroplakin tetraspanins and their partners during vertebrate evolution: identification of novel uroplakins. BMC Evol Biol 14:13. doi: 10.1186/1471-2148-14-13 PubMedCentralPubMedCrossRefGoogle Scholar
  27. DuBose TD Jr (1982) Hydrogen ion secretion by the collecting duct as a determinant of the urine to blood PCO2 gradient in alkaline urine. J Clin Invest 69:145–156PubMedCentralPubMedCrossRefGoogle Scholar
  28. Eichling JO, Raichle ME, Grubb RL, Ter-Pogossian MM (1974) Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 35:358–364PubMedCrossRefGoogle Scholar
  29. Erman A, Kerec Kos M, Zakelj S, Resnik N, Romih R, Veranic P (2013) Correlative study of functional and structural regeneration of urothelium after chitosan-induced injury. Histochem Cell Biol 140:521–531. doi: 10.1007/s00418-013-1088-7 PubMedCrossRefGoogle Scholar
  30. Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B (2010a) Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol 298:F692–F701. doi: 10.1152/ajprenal.00599.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Everaerts W, Zhen X, Ghosh D et al (2010b) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107:19084–19089. doi: 10.1073/pnas.1005333107 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Fellows GJ (1972) Permeability of normal and diseased human bladder epithelium. Proc R Soc Med 65:299–300PubMedCentralPubMedGoogle Scholar
  33. Franken J, Uvin P, De Ridder D, Voets T (2014) TRP channels in lower urinary tract dysfunction. Br J Pharmacol 171:2537–2551PubMedCentralPubMedCrossRefGoogle Scholar
  34. Frings SM, Purves RD, Macknight AD (1990) Ion channels in urinary bladder. Ren Physiol Biochem 13:112–128PubMedGoogle Scholar
  35. Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13PubMedCrossRefGoogle Scholar
  36. Fu D, Lu M (2007) The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol 24:366–374. doi: 10.1080/09687680701446965 PubMedCrossRefGoogle Scholar
  37. Fujita H, Hamazaki Y, Noda Y, Oshima M, Minato N (2012) Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7:e52272. doi: 10.1371/journal.pone.0052272 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272PubMedCentralPubMedCrossRefGoogle Scholar
  39. Gevaert T, Vriens J, Segal A et al (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462. doi: 10.1172/JCI31766 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ghosh M, Brancato SJ, Agarwal PK, Apolo AB (2014) Targeted therapies in urothelial carcinoma. Curr Opin Oncol 26:305–320. doi: 10.1097/CCO.0000000000000064 PubMedCrossRefGoogle Scholar
  41. Grasso EJ, Calderon RO (2009) Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem 330:163–169. doi: 10.1007/s11010-009-0129-y PubMedCrossRefGoogle Scholar
  42. Grasso EJ, Calderon RO (2013) Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition. Histochem Cell Biol 139:249–265. doi: 10.1007/s00418-012-1034-0 PubMedCrossRefGoogle Scholar
  43. GuhaSarkar S, Banerjee R (2010) Intravesical drug delivery: Challenges, current status, opportunities and novel strategies. J Control Release 148:147–159. doi: 10.1016/j.jconrel.2010.08.031 PubMedCrossRefGoogle Scholar
  44. Hauser PJ, Buethe DA, Califano J, Sofinowski TM, Culkin DJ, Hurst RE (2009) Restoring barrier function to acid damaged bladder by intravesical chondroitin sulfate. J Urol 182:2477–2482. doi: 10.1016/j.juro.2009.07.013 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hicks RM, Ketterer B, Warren RC (1974) The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: a structure with low permeability to water and ions. Philos Trans R Soc Lond B Biol Sci 268:23–38PubMedCrossRefGoogle Scholar
  46. Hill WG, Zeidel ML (2000) Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J Biol Chem 275:30176–30185. doi: 10.1074/jbc.M003494200 PubMedCrossRefGoogle Scholar
  47. Hu P, Deng FM, Liang FX et al (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283:F1200–F1207. doi: 10.1152/ajprenal.00043.2002 PubMedCrossRefGoogle Scholar
  49. Hudoklin S, Zupančič D, Makovec D, Kreft ME, Romih R (2013) Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo. Int J Nanomedicine 8:3945–3953. doi: 10.2147/IJN.S44363 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hurst RE, Rhodes SW, Adamson PB, Parsons CL, Roy JB (1987) Functional and structural characteristics of the glycosaminoglycans of the bladder luminal surface. J Urol 138:433–437PubMedGoogle Scholar
  51. Hurst RE, Roy JB, Min KW et al (1996) A deficit of chondroitin sulfate proteoglycans on the bladder uroepithelium in interstitial cystitis. Urology 48:817–821. doi: 10.1016/S0090-4295(96)00322-6 PubMedCrossRefGoogle Scholar
  52. Imani R, Veranič P, Iglič A, Kreft ME, Pazoki M, Hudoklin S (2014) Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem Photobiol Sci. doi: 10.1039/c4pp00272e Google Scholar
  53. Janssen DA, van Wijk XM, Jansen KC, van Kuppevelt TH, Heesakkers JP, Schalken JA (2013) The distribution and function of chondroitin sulfate and other sulfated glycosaminoglycans in the human bladder and their contribution to the protective bladder barrier. J Urol 189:336–342. doi: 10.1016/j.juro.2012.09.022 PubMedCrossRefGoogle Scholar
  54. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90Google Scholar
  55. Jerman UD, Veranič P, Kreft ME (2013) Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods. doi: 10.1089/ten.TEC.2013.0298 PubMedCentralPubMedGoogle Scholar
  56. Jost SP (1989) Cell cycle of normal bladder urothelium in developing and adult mice. Virchows Arch B Cell Pathol Incl Mol Pathol 57:27–36PubMedCrossRefGoogle Scholar
  57. Khandelwal P, Abraham SN, Apodaca G (2009) Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297:F1477–F1501. doi: 10.1152/ajprenal.00327.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Khandelwal P, Ruiz WG, Apodaca G (2010) Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. EMBO J 29:1961–1975. doi: 10.1038/emboj.2010.91 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Khandelwal P, Ruiz WG, Balestreire-Hawryluk E, Weisz OA, Goldenring JR, Apodaca G (2008) Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells. Proc Natl Acad Sci U S A 105:15773–15778. doi: 10.1073/pnas.0805636105 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886PubMedGoogle Scholar
  61. Kobayashi K, Miwa H, Yasui M (2010) Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J Physiol 588:4859–4869. doi: 10.1113/jphysiol.2010.197764 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Kreft ME, Jezernik K, Kreft M, Romih R (2009a) Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci 1152:18–29. doi: 10.1111/j.1749-6632.2008.04004.x PubMedCrossRefGoogle Scholar
  63. Kreft ME, Robenek H (2012) Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PloS one 7:e38509. doi: 10.1371/journal.pone.0038509 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Kreft ME, Romih R, Kreft M, Jezernik K (2009b) Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation 77:48–59. doi: 10.1016/j.diff.2008.09.011 PubMedCrossRefGoogle Scholar
  65. Kreft ME, Sterle M, Jezernik K (2006) Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125:475–485. doi: 10.1007/s00418-005-0104-y PubMedCrossRefGoogle Scholar
  66. Kreft ME, Sterle M, Veranic P, Jezernik K (2005) Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123:529–539. doi: 10.1007/s00418-005-0770-9 PubMedCrossRefGoogle Scholar
  67. Kreplak L, Wang H, Aebi U, Kong XP (2007) Atomic force microscopy of Mammalian urothelial surface. J Mol Biol 374:365–373. doi: 10.1016/j.jmb.2007.09.040 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Lacaz-Vieira F, Jaeger MM, Farshori P, Kachar B (1999) Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J Membr Biol 168:289–297PubMedCrossRefGoogle Scholar
  69. Lavelle J, Meyers S, Ramage R, Bastacky S, Doty D, Apodaca G, Zeidel ML (2002) Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am J Physiol Renal Physiol 283:F242–F253. doi: 10.1152/ajprenal.00307.2001 PubMedCrossRefGoogle Scholar
  70. Lavelle JP, Meyers SA, Ruiz WG, Buffington CA, Zeidel ML, Apodaca G (2000) Urothelial pathophysiological changes in feline interstitial cystitis: a human model. Am J Physiol Renal Physiol 278:F540–F553PubMedGoogle Scholar
  71. Lewis SA (2000) Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol 278:F867–F874PubMedGoogle Scholar
  72. Lewis SA, Clausen C (1991) Urinary proteases degrade epithelial sodium channels. J Membr Biol 122:77–88PubMedCrossRefGoogle Scholar
  73. Lewis SA, Diamond JM (1976) Na + transport by rabbit urinary bladder, a tight epithelium. J Membr Biol 28:1–40PubMedCrossRefGoogle Scholar
  74. Lewis SA, Eaton DC, Diamond JM (1976) The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol 28:41–70PubMedCrossRefGoogle Scholar
  75. Lewis SA, Kleine TJ (2000) Urea modifies the permeability of the mammalian urothelium. J Urol 164:219–223Google Scholar
  76. Lewis SA, Wills NK (1983) Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder. J Physiol 341:169–184PubMedCentralPubMedCrossRefGoogle Scholar
  77. Lewis SA, Wills NK, Eaton DC (1978) Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J Membr Biol 41:117–148PubMedCrossRefGoogle Scholar
  78. Lilly JD, Parsons CL (1990) Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynecol Obstet 171:493–496PubMedGoogle Scholar
  79. Locher GW, Cooper EH (1970) Repair of rat urinary bladder epithelium following injury by cyclophosphamide. Invest Urol 8:116–123PubMedGoogle Scholar
  80. Lu Z, Yeh TK, Wang J et al (2011) Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. J Urol 185:1478–1483. doi: 10.1016/j.juro.2010.11.091 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lucien N, Bruneval P, Lasbennes F et al (2005) UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol 288:R1046–R1056. doi: 10.1152/ajpregu.00286.2004 PubMedCrossRefGoogle Scholar
  82. Martínez-Palomo A, Erlij D (1975) Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A 72:4487–4491PubMedCentralPubMedCrossRefGoogle Scholar
  83. Mathai JC, Zhou EH, Yu W et al (2014) Hypercompliant apical membranes of bladder umbrella cells. Biophys J 107:1273–1279. doi: 10.1016/j.bpj.2014.07.047 PubMedCentralPubMedCrossRefGoogle Scholar
  84. McCarthy KM, Skare IB, Stankewich MC et al (1996) Occludin is a functional component of the tight junction. J Cell Sci 109(Pt 9):2287–2298PubMedGoogle Scholar
  85. Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094. doi: 10.1242/jcs.00811 PubMedCrossRefGoogle Scholar
  86. Mineta K, Yamamoto Y, Yamazaki Y et al (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585:606–612. doi: 10.1016/j.febslet.2011.01.028 PubMedCrossRefGoogle Scholar
  87. Nakamura T, Yamada M, Teshima M, Nakashima M, To H, Ichikawa N, Sasaki H (2007) Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients. Biol Pharm Bull 30:2360–2364PubMedCrossRefGoogle Scholar
  88. Nakanishi K, Ogata S, Hiroi S, Tominaga S, Aida S, Kawai T (2008) Expression of occludin and claudins 1, 3, 4, and 7 in urothelial carcinoma of the upper urinary tract. Am J Clin Pathol 130:43–49. doi: 10.1309/U77A6BTEXVCA5D0E PubMedCrossRefGoogle Scholar
  89. Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996a) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271:F886–F894PubMedGoogle Scholar
  90. Negrete HO, Rivers RL, Goughs AH, Colombini M, Zeidel ML (1996b) Individual leaflets of a membrane bilayer can independently regulate permeability. J Biol Chem 271:11627–11630PubMedCrossRefGoogle Scholar
  91. Neutsch L, Plattner VE, Polster-Wildhofen S et al (2011) Lectin mediated biorecognition as a novel strategy for targeted delivery to bladder cancer. J Urol 186:1481–1488. doi: 10.1016/j.juro.2011.05.040 PubMedCrossRefGoogle Scholar
  92. Parsons CL (2007) The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 69:9–16. doi: 10.1016/j.urology.2006.03.084 PubMedCrossRefGoogle Scholar
  93. Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H (1990) Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol 143:139–142PubMedGoogle Scholar
  94. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275–G288PubMedGoogle Scholar
  95. Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87:1479–1488PubMedCrossRefGoogle Scholar
  96. Richter S, Sridhar SS (2012) New directions for biologic targets in urothelial carcinoma. Mol Cancer Ther 11:1226–1235. doi: 10.1158/1535-7163.MCT-11-0756 PubMedCrossRefGoogle Scholar
  97. Rickard A, Dorokhov N, Ryerse J, Klumpp DJ, McHowat J (2008) Characterization of tight junction proteins in cultured human urothelial cells. In Vitro Cell Dev Biol Anim 44:261–267. doi: 10.1007/s11626-008-9116-y PubMedCentralPubMedCrossRefGoogle Scholar
  98. Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JK (1992) The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 9:1029–1034PubMedCrossRefGoogle Scholar
  99. Romih R, Jezernik K (1994) Endocytosis during postnatal differentiation in superficial cells of the mouse urinary bladder epithelium. Cell Biol Int 18:663–668. doi: 10.1006/cbir.1994.1093 PubMedCrossRefGoogle Scholar
  100. Romih R, Korosec P, de Mello W Jr, Jezernik K (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320:259–268 doi:10.1007/s00441-004-1005-4Google Scholar
  101. Rubenwolf PC, Georgopoulos NT, Clements LA, Feather S, Holland P, Thomas DF, Southgate J (2009) Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro. Eur Urol 56:1013–1023. doi: 10.1016/j.eururo.2008.08.013 PubMedCrossRefGoogle Scholar
  102. Rubenwolf PC, Georgopoulos NT, Kirkwood LA, Baker SC, Southgate J (2012) Aquaporin expression contributes to human transurothelial permeability in vitro and is modulated by NaCl. PLoS One 7:e45339. doi: 10.1371/journal.pone.0045339 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Sands JM, Timmer RT, Gunn RB (1997) Urea transporters in kidney and erythrocytes. Am J Physiol 273:F321–F339PubMedGoogle Scholar
  104. Schulzke JD, Gitter AH, Mankertz J et al (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669:34–42. doi: 10.1016/j.bbamem.2005.01.008 PubMedCrossRefGoogle Scholar
  105. Smith NJ, Hinley JS, Varley CL, Eardley I, Trejdosiewicz LK, Southgate J (2015) The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder 2(1):e9. doi: 10.14440/bladder.2015.33
  106. Smith PR, Mackler SA, Weiser PC et al (1998) Expression and localization of epithelial sodium channel in mammalian urinary bladder. Am J Physiol 274:F91–F96PubMedGoogle Scholar
  107. Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20:1425–1431PubMedCrossRefGoogle Scholar
  108. Spector DA, Deng J, Stewart KJ (2011) Hydration status affects urea transport across rat urothelia. Am J Physiol Renal Physiol 301:F1208–F1217. doi: 10.1152/ajprenal.00386.2011 PubMedCrossRefGoogle Scholar
  109. Spector DA, Wade JB, Dillow R, Steplock DA, Weinman EJ (2002) Expression, localization, and regulation of aquaporin-1 to −3 in rat urothelia. Am J Physiol Renal Physiol 282:F1034–F1042. doi: 10.1152/ajprenal.00136.2001 PubMedCrossRefGoogle Scholar
  110. Spector DA, Yang Q, Klopouh L et al (2008) The ROMK potassium channel is present in mammalian urinary tract epithelia and muscle. Am J Physiol Renal Physiol 295:F1658–F1665. doi: 10.1152/ajprenal.00022.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Spector DA, Yang Q, Liu J, Wade JB (2004) Expression, localization, and regulation of urea transporter B in rat urothelia. Am J Physiol Renal Physiol 287:F102–F108. doi: 10.1152/ajprenal.00442.2003 PubMedCrossRefGoogle Scholar
  112. Spector DA, Yang Q, Wade JB (2007) High urea and creatinine concentrations and urea transporter B in mammalian urinary tract tissues. Am J Physiol Renal Physiol 292:F467–F474. doi: 10.1152/ajprenal.00181.2006 PubMedCrossRefGoogle Scholar
  113. Staehelin LA, Chlapowski FJ, Bonneville MA (1972) Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol 53:73–91PubMedCentralPubMedCrossRefGoogle Scholar
  114. Sterle I, Zupančič D, Romih R (2014) Correlation between urothelial differentiation and sensory proteins P2X3, P2X5, TRPV1, and TRPV4 in normal urothelium and papillary carcinoma of human bladder. Biomed Res Int 2014:805236. doi: 10.1155/2014/805236 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Stolwijk JA, Matrougui K, Renken CW, Trebak M (2014) Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements. Pflugers Arch. doi: 10.1007/s00424-014-1674-0 Google Scholar
  116. Stubbs CD, Ketterer B, Hicks RM (1979) The isolation and analysis of the luminal plasma membrane of calf urinary bladder epithelium. Biochim Biophys Acta 558:58–72PubMedCrossRefGoogle Scholar
  117. Sugasi S, Lesbros Y, Bisson I, Zhang YY, Kucera P, Frey P (2000) In vitro engineering of human stratified urothelium: analysis of its morphology and function. J Urol 164:951–957PubMedCrossRefGoogle Scholar
  118. Székely E, Törzsök P, Riesz P et al (2011) Expression of claudins and their prognostic significance in noninvasive urothelial neoplasms of the human urinary bladder. J Histochem Cytochem 59:932–941. doi: 10.1369/0022155411418829 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Terada N, Ohno N, Saitoh S et al (2009) Involvement of dynamin-2 in formation of discoid vesicles in urinary bladder umbrella cells. Cell Tissue Res 337:91–102. doi: 10.1007/s00441-009-0804-z PubMedGoogle Scholar
  120. Thumbikat P, Berry RE, Zhou G et al (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415. doi: 10.1371/journal.ppat.1000415 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Törzsök P, Riesz P, Kenessey I et al (2011) Claudins and ki-67: potential markers to differentiate low- and high-grade transitional cell carcinomas of the urinary bladder. J Histochem Cytochem 59:1022–1030. doi: 10.1369/0022155411424606 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Truschel ST, Wang E, Ruiz WG et al (2002) Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell 13:830–846. doi: 10.1091/mbc.01-09-0435 PubMedCentralPubMedCrossRefGoogle Scholar
  123. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273 doi:S0962-8924(99)01578-0Google Scholar
  124. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293. doi: 10.1038/35067088 PubMedCrossRefGoogle Scholar
  125. Van Batavia J, Yamany T, Molotkov A et al (2014) Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 16:981–985. doi: 10.1038/ncb3038 Google Scholar
  126. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327. doi: 10.1172/JCI12464 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Van Itallie CM, Anderson JM (2004) The molecular physiology of tight junction pores. Physiology (Bethesda) 19:331–338. doi: 10.1152/physiol.00027.2004 CrossRefGoogle Scholar
  128. van Os CH, Wiedner G, Wright EM (1979) Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients. J Membr Biol 49:1–20PubMedCrossRefGoogle Scholar
  129. Varley CL, Garthwaite MA, Cross W, Hinley J, Trejdosiewicz LK, Southgate J (2006) PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. J Cell Physiol 208:407–417. doi: 10.1002/jcp.20676 PubMedCentralPubMedCrossRefGoogle Scholar
  130. Varley CL, Southgate J (2008) Effects of PPAR agonists on proliferation and differentiation in human urothelium. Exp Toxicol Pathol 60:435–441. doi: 10.1016/j.etp.2008.04.009 PubMedCrossRefGoogle Scholar
  131. Vergara J, Zambrano F, Robertson JD, Elrod H (1974) Isolation and characterization of luminal membranes from urinary bladder. J Cell Biol 61:83–94PubMedCentralPubMedCrossRefGoogle Scholar
  132. Visnjar T, Kreft ME (2014) The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol. doi: 10.1007/s00418-014-1265-3 PubMedGoogle Scholar
  133. Višnjar T, Kocbek P, Kreft ME (2012) Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137:177–186. doi: 10.1007/s00418-011-0893-0 PubMedCrossRefGoogle Scholar
  134. Višnjar T, Kreft ME (2013) Air-liquid and liquid-liquid interfaces influence the formation of the urothelial permeability barrier in vitro. In Vitro Cell Dev Biol Anim 49:196–204. doi: 10.1007/s11626-013-9585-5 PubMedCrossRefGoogle Scholar
  135. Višnjar T, Kreft ME (2015) The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol 143:95–107. doi: 10.1007/s00418-014-1265-3 PubMedCrossRefGoogle Scholar
  136. Wang E, Truschel S, Apodaca G (2003a) Analysis of hydrostatic pressure-induced changes in umbrella cell surface area. Methods 30:207–217 doi:S1046202303000276Google Scholar
  137. Wang EC, Lee JM, Johnson JP, Kleyman TR, Bridges R, Apodaca G (2003b) Hydrostatic pressure-regulated ion transport in bladder uroepithelium. Am J Physiol Renal Physiol 285:F651–F663. doi: 10.1152/ajprenal.00403.2002 PubMedCrossRefGoogle Scholar
  138. Wu XR, Sun TT, Medina JJ (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci U S A 93:9630–9635PubMedCentralPubMedCrossRefGoogle Scholar
  139. Xie B, Zhou G, Chan SY et al (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653. doi: 10.1074/jbc.M600877200 PubMedCrossRefGoogle Scholar
  140. Ye F, Wang L, Castillo-Martin M et al (2014) Biomarkers for bladder cancer management: present and future. Am J Clin Exp Urol 2:1–14PubMedCentralPubMedCrossRefGoogle Scholar
  141. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359. doi: 10.1074/jbc.M213286200 PubMedCrossRefGoogle Scholar
  142. Yu W, Khandelwal P, Apodaca G (2009) Distinct apical and basolateral membrane requirements for stretch-induced membrane traffic at the apical surface of bladder umbrella cells. Mol Biol Cell 20:282–295. doi: 10.1091/mbc.E08-04-0439 PubMedCentralPubMedCrossRefGoogle Scholar
  143. Zhou G, Mo WJ, Sebbel P et al (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103PubMedGoogle Scholar
  144. Zocher F, Zeidel ML, Missner A et al (2012) Uroplakins do not restrict CO2 transport through urothelium. J Biol Chem 287:11011–11017. doi: 10.1074/jbc.M112.339283 PubMedCentralPubMedCrossRefGoogle Scholar
  145. Zupančič D, Kreft ME, Romih R (2014a) Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. Protoplasma 251:49–59. doi: 10.1007/s00709-013-0524-9 PubMedCrossRefGoogle Scholar
  146. Zupančič D, Romih R, Robenek H, Žužek Rožman K, Samardžija Z, Kostanjšek R, Kreft ME (2014b) Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques. Microsc Res Tech 77:896–901. doi: 10.1002/jemt.22412 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eva Lasič
    • 1
  • Tanja Višnjar
    • 1
  • Mateja Erdani Kreft
    • 1
    Email author
  1. 1.Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations