Skip to main content

Multi-photon excitation imaging of dynamic processes in living cells and tissues

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 160))

Abstract

Over the past decade, two-photon microscopy has successfully made the transition from the laser laboratory into a true biological research setting. This has been due in part to the recent development of turnkey ultrafast laser systems required for two-photon microscopy, allowing ease of use in nonspecialist laboratories. The advantages of two-photon microscopy over conventional optical sectioning techniques are for greater imaging depths and reduced overall phototoxicity, as such enabling noninvasive intra-vital imaging of cellular and subcellular processes. Greater understanding of these advantages has allowed this technique to be more effectively utilized in a biological research setting. This review will cover the recent widespread uses of two-photon microscopy and highlight the wide range of physiological studies enabled in fields such as neurosciences, developmental biology, immunology, cancer biology, and endocrinology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technology such as that used on the LSM5Live line scanning microscope: www.zeiss.com/micro.

Abbreviations

2PM:

Two-photon microscopy

fl:

Femtoliter

fs:

Femtosecond

NA:

Numerical aperture

NDD:

Non-descanned detection

GFP:

Green fluorescent protein

[Ca2+]i :

Intra-cellular calcium concentration

DCs:

Dendritic cells

QD:

Quantum dot

NAD(P)H:

β-Nicotinamide adenine dinucleotide (phosphate)

SHG:

Second harmonic generation

THG:

Third harmonic generation

References

  • Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356

    PubMed  CAS  Google Scholar 

  • Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, Jain RK (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10:203–207

    PubMed  CAS  Google Scholar 

  • Araya R, Eisenthal KB, Yuste R (2006a) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci USA 103:18799–18804

    PubMed  CAS  Google Scholar 

  • Araya R, Jiang J, Eisenthal KB, Yuste R (2006b) The spine neck filters membrane potentials. Proc Natl Acad Sci USA 103:17961–17966

    PubMed  CAS  Google Scholar 

  • Bennett BD, Jetton TL, Ying GT, Magnuson MA, Piston DW (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271:3647–3651

    PubMed  CAS  Google Scholar 

  • Benninger RKP, Onfelt B, Neil MAA, Davis DM, French PMW (2005) Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J 88:609–622

    PubMed  CAS  Google Scholar 

  • Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115

    PubMed  CAS  Google Scholar 

  • Bhakta NR, Oh DY, Lewis RS (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6:143–151

    PubMed  CAS  Google Scholar 

  • Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356

    PubMed  CAS  Google Scholar 

  • Bonnefont X, Lacampagne A, Sanchez-Hormigo A, Fino E, Creff A, Mathieu MN, Smallwood S, Carmignac D, Fontanaud P, Travo P, Alonso G, Courtois-Coutry N, Pincus SM, Robinson I, Mollard P (2005) Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad Sci USA 102:16880–16885

    PubMed  CAS  Google Scholar 

  • Boulesteix T, Pena AM, Pages N, Godeau G, Sauviat MP, Beaurepaire E, Schanne-Klein MC (2006) Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A 69A:20–26

    Google Scholar 

  • Brakenhoff GJ, Squier J, Norris T, Bliton AC, Wade MH, Athey B (1996) Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J Microsc 181:253–259

    PubMed  CAS  Google Scholar 

  • Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800

    PubMed  CAS  Google Scholar 

  • Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    PubMed  CAS  Google Scholar 

  • Cahalan MD, Gutman GA (2006) The sense of place in the immune system. Nat Immunol 7:329–332

    PubMed  CAS  Google Scholar 

  • Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings BA, Downward J, Parker PJ, Larijani B (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5:780–791

    CAS  Google Scholar 

  • Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng GY, van der Velden AWM, Cariappa A, Chase C, Russell P, Starnbach MN, Koni PA, Pillai S, Weninger W, von Andrian UH (2005) Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6:1029–1037

    PubMed  CAS  Google Scholar 

  • Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    PubMed  CAS  Google Scholar 

  • Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086

    PubMed  CAS  Google Scholar 

  • Chaigneau E, Tiret P, Lecoq J, Ducros M, Knopfel T, Charpak S (2007) The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 27:6452–6460

    PubMed  CAS  Google Scholar 

  • Chirico G, Cannone F, Baldini G, Diaspro A (2003) Two-photon thermal bleaching of single fluorescent molecules. Biophys J 84:588–598

    PubMed  CAS  Google Scholar 

  • Cox G, Kable E (2006) Second-harmonic imaging of collagen. Methods Mol Biol 319:15–39

    PubMed  CAS  Google Scholar 

  • Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    PubMed  CAS  Google Scholar 

  • Denk W (1994) Two-photon scanning photochemical microscopy—mapping ligand-gated ion-channel distributions. Proc Natl Acad Sci USA 91:6629–6633

    PubMed  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) 2-Photon laser scanning fluorescence microscopy. Science 248:73–76

    PubMed  CAS  Google Scholar 

  • Estrada CR, Salanga M, Bielenberg DR, Harrell WB, Zurakowski D, Zhu XP, Palmer NR, Freeman MR, Adam RM (2006) Behavioral profiling of human transitional cell carcinoma ex vivo. Cancer Res 66:3078–3086

    PubMed  CAS  Google Scholar 

  • FitzHarris G, Larman M, Richards C, Carroll J (2005) An increase in [Ca2+](i) is sufficient but not necessary for driving mitosis in early mouse embryos. J Cell Sci 118:4563–4575

    PubMed  CAS  Google Scholar 

  • Flusberg BA, Lung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274

    PubMed  Google Scholar 

  • Gannaway JN, Sheppard CJR (1978) 2nd-Harmonic imaging in scanning optical microscope. Opt Quant Electron 10:435–439

    CAS  Google Scholar 

  • Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559

    PubMed  CAS  Google Scholar 

  • Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734

    PubMed  CAS  Google Scholar 

  • Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated Protein C ameliorates LPS-induced acute kidney injury and down-regulates renal iNOS and Angiotensin 2. Am J Physiol Renal Physiol 293:F245–F254

    PubMed  CAS  Google Scholar 

  • Heart E, Yaney GC, Corkey RF, Schultz V, Luc E, Liu L, Deeney JT, Shirihai O, Tornheim K, Smith PJS, Corkey BE (2007) Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. Biochem J 403:197–205

    PubMed  CAS  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    PubMed  CAS  Google Scholar 

  • Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029–2036

    PubMed  CAS  Google Scholar 

  • Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235:3222–3229

    PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    PubMed  CAS  Google Scholar 

  • Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292:H3198–H3206

    PubMed  CAS  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    PubMed  CAS  Google Scholar 

  • Lyubovitsky JG, Spencer JA, Krasieva TB, Andersen B, Tromberg BJ (2006) Imaging corneal pathology in a transgenic mouse model using nonlinear microscopy. J Biomed Opt 11:014010

    Google Scholar 

  • Matsumoto-Ida M, Akao M, Takeda T, Kato M, Kita T (2006) Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation 114:1497–1503

    PubMed  CAS  Google Scholar 

  • Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    PubMed  CAS  Google Scholar 

  • Molitoris BA, Sandoval RM (2005) Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288:F1084–F1089

    PubMed  CAS  Google Scholar 

  • Morishige N, Petroll WM, Nishida T, Kenney MC, Jester JV (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J Cataract Refract Surg 32:1784–1791

    PubMed  Google Scholar 

  • Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HCJ, Haydon PG, Weninger W (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203:2749–2761

    PubMed  CAS  Google Scholar 

  • Neil MAA, Juskaitis R, Booth MJ, Wilson T, Tanaka T, Kawata S (2000) Adaptive aberration correction in a two-photon microscope. J Microsc 200:105–108

    PubMed  Google Scholar 

  • Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:642–649

    PubMed  CAS  Google Scholar 

  • Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, Kleinfeld D (2006) Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3:99–108

    PubMed  CAS  Google Scholar 

  • Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D (2007) Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA 104:365–370

    PubMed  CAS  Google Scholar 

  • Pardo B, Contreras L, Serrano A, Ramos M, Kobayashi K, Iijima M, Saheki T, Satrustegui J (2006) Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria. J Biol Chem 281:1039–1047

    PubMed  CAS  Google Scholar 

  • Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    PubMed  CAS  Google Scholar 

  • Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW (2000) Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci USA 97:5203–5207

    PubMed  CAS  Google Scholar 

  • Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+](i) transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    PubMed  CAS  Google Scholar 

  • Peti-Peterdi J (2005) Multiphoton imaging of renal tissues in vitro. Am J Physiol Renal Physiol 288:F1079–F1083

    PubMed  CAS  Google Scholar 

  • Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    PubMed  CAS  Google Scholar 

  • Piston DW, Summers RG, Knobel SM, Morrill JB (1998) Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc Microanal 4:404–414

    PubMed  CAS  Google Scholar 

  • Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med 4:30

    Google Scholar 

  • Rocheleau JV, Head WS, Piston DW (2004a) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787

    PubMed  CAS  Google Scholar 

  • Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW (2004b) Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci USA 101:12899–12903

    PubMed  CAS  Google Scholar 

  • Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    PubMed  CAS  Google Scholar 

  • Rubart M, Wang EX, Dunn KW, Field LJ (2003) Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol Cell Physiol 284:C1654–C1668

    PubMed  CAS  Google Scholar 

  • Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci USA 103:17137–17142

    PubMed  CAS  Google Scholar 

  • Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4:258–270

    CAS  Google Scholar 

  • Schonle A, Hell SW (1998) Heating by absorption in the focus of an objective lens. Opt Lett 23:325–327

    PubMed  CAS  Google Scholar 

  • Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D, Kosco-Vilbois MH, Dustin ML, Nussenzweig MC (2007) In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446:83–87

    PubMed  CAS  Google Scholar 

  • Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC, Dustin ML (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–714

    PubMed  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22:1567–1572

    PubMed  CAS  Google Scholar 

  • Shu XK, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647

    PubMed  CAS  Google Scholar 

  • Skala MC, Squirrell JM, Vrotsos KM, Eickhoff VC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam N (2005) Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65:1180–1186

    PubMed  CAS  Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA 99:10765–10770

    PubMed  CAS  Google Scholar 

  • Spiess E, Bestvater F, Heckel-Pompey A, Toth K, Hacker M, Stobrawa G, Feurer T, Wotzlaw C, Berchner-Pfannschmidt U, Porwol T, Acker H (2005) Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc 217:200–204

    PubMed  CAS  Google Scholar 

  • Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767

    PubMed  CAS  Google Scholar 

  • Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J (2006) Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res 47:2121–2133

    PubMed  CAS  Google Scholar 

  • Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682

    PubMed  CAS  Google Scholar 

  • Summers RG, Piston DW, Harris KM, Morrill JB (1996) The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry. Dev Biol 175:177–183

    PubMed  CAS  Google Scholar 

  • Supatto W, Debarre D, Moulia B, Brouzes E, Martin JL, Farge E, Beaurepaire E (2005) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 102:1047–1052

    PubMed  CAS  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng WG, Lou NH, Libionka W, Han XN, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  • Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688

    PubMed  Google Scholar 

  • Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    PubMed  CAS  Google Scholar 

  • Thompson HGR, Mih JD, Krasieva TB, Tromberg BJ, George SC (2006) Epithelial-derived TGF-beta 2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 291:L1277–L1285

    PubMed  CAS  Google Scholar 

  • Tsai TH, Lin CY, Tsai HJ, Chen SY, Tai SP, Lin KH, Sun CK (2006) Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section. Opt Lett 31:930–932

    PubMed  CAS  Google Scholar 

  • Valdmanis JA, Fork RL (1986) Design considerations for a femtosecond pulse laser balancing self phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. IEEE J Quant Electron 22:112–118

    Google Scholar 

  • Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052

    PubMed  CAS  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    PubMed  CAS  Google Scholar 

  • Wise FW, Walmsley IA, Tang CL (1988) Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye-laser. Opt Lett 13:129–131

    PubMed  CAS  Google Scholar 

  • Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738

    PubMed  CAS  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    PubMed  CAS  Google Scholar 

  • Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B Opt Phys 13:481–491

    CAS  Google Scholar 

  • Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768

    PubMed  CAS  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684

    PubMed  CAS  Google Scholar 

  • Zhang QH, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897

    PubMed  CAS  Google Scholar 

  • Zhang QH, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH (2006) Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci USA 103:9029–9033

    PubMed  CAS  Google Scholar 

  • Zipfel WR, Omalley JP, VanHelden D, Williams RM, Guild JB, Salpeter MM, Webb WW (1996) Characterization of spontaneous calcium waves and sparks in primary cultures of fetal rat myotubes using two photon excitation point and line scanning microscopy. Biophys J 70:WP283

    Google Scholar 

  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Gert-Jan Kremers for helpful comments on the manuscript. The authors acknowledge financial support from National Institute of Health grants R01-DK53434, P20-GM72048 and the Medical Free-Electron Laser Program of the United States Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. P. Benninger .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

Benninger, R.K.P., Hao, M., Piston, D.W. (2008). Multi-photon excitation imaging of dynamic processes in living cells and tissues. In: Reviews of Physiology Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_2008_801

Download citation

Publish with us

Policies and ethics