Amyloid peptides and proteins in review

  • R. S. Harrison
  • P. C. Sharpe
  • Y. Singh
  • D. P. FairlieEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 159)


Amyloids are filamentous protein deposits ranging in size from nanometres to microns and composed of aggregated peptide β-sheets formed from parallel or anti-parallel alignments of peptide β-strands. Amyloid-forming proteins have attracted a great deal of recent attention because of their association with over 30 diseases, notably neurodegenerative conditions like Alzheimer's, Huntington's, Parkinson's, Creutzfeldt-Jacob and prion disorders, but also systemic diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease) and type II diabetes. These diseases are all thought to involve important conformational changes in proteins, sometimes termed misfolding, that usually produce β-sheet structures with a strong tendency to aggregate into water-insoluble fibrous polymers. Reasons for such conformational changes in vivo are still unclear. Intermediate aggregated state(s), rather than precipitated insoluble polymeric aggregates, have recently been implicated in cellular toxicity and may be the source of aberrant pathology in amyloid diseases. Numerous in vitro studies of short and medium length peptides that form amyloids have provided some clues to amyloid formation, with an α-helix to β-sheet folding transition sometimes implicated as an intermediary step leading to amyloid formation. More recently, quite a few non-pathological amyloidogenic proteins have also been identified and physiological properties have been ascribed, challenging previous implications that amyloids were always disease causing. This article summarises a great deal of current knowledge on the occurrence, structure, folding pathways, chemistry and biology associated with amyloidogenic peptides and proteins and highlights some key factors that have been found to influence amyloidogenesis.



We thank the Australian Research Council and the National Health & Medical Research Council for some financial support of the researchers who performed this work.


  1. Agianian B, Leonard K, Bonte E, Van der Zandt H, Becker PB, Tucker PA (1999) The glutamine-rich domain of the Drosophila GAGA factor is necessary for amyloid fibre formation in vitro, but not for chromatin remodelling. J Mol Biol 285:527–544PubMedGoogle Scholar
  2. Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer's disease. Science 302:814–818PubMedGoogle Scholar
  3. Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675PubMedGoogle Scholar
  4. Aldave AJ, Gutmark JG, Yellore VS, Affeldt JA, Meallet MA, Udar N, Rao NA, Small KW, Klintworth GK (2004) Lattice corneal dystrophy associated with the Ala546Asp and Pro551Gln missense changes in the TGFBI gene. Am J Ophthalmol 138:772–781PubMedGoogle Scholar
  5. Alexandrescu AT (2001) An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A. Pac Symp Biocomput 67–78Google Scholar
  6. Alexandrescu AT (2005) Amyloid accomplices and enforcers. Protein Sci 14:1–12PubMedGoogle Scholar
  7. Alexandrescu AT, Rathgeb-Szabo K (1999) An NMR investigation of solution aggregation reactions preceding the misassembly of acid-denatured cold shock protein A into fibrils. J Mol Biol 291:1191–1206PubMedGoogle Scholar
  8. Altland K, Winter P (1999) Potential treatment of transthyretin-type amyloidoses by sulfite. Neurogenetics 2:183–188PubMedGoogle Scholar
  9. Altland K, Winter P, Saraiva MJ, Suhr O (2004) Sulfite and base for the treatment of familial amyloidotic polyneuropathy: two additive approaches to stabilize the conformation of human amyloidogenic transthyretin. Neurogenetics 5:61–67PubMedGoogle Scholar
  10. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer's 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8:429–431PubMedGoogle Scholar
  11. Ancsin JB (2003) Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 10:67–79PubMedGoogle Scholar
  12. Ando Y, Nakamura M, Araki S (2005) Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol 62:1057–1062PubMedGoogle Scholar
  13. Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M (2003) Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J Biol Chem 278:2444–2451PubMedGoogle Scholar
  14. Arimon M, Diez-Perez I, Kogan MJ, Durany N, Giralt E, Sanz F, Fernandez-Busquets X (2005) Fine structure study of Abeta 1–42 fibrillogenesis with atomic force microscopy. FASEB J 19:1344–1346PubMedGoogle Scholar
  15. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta 1–42. J Neurochem 75:1219–1233PubMedGoogle Scholar
  16. Atwood CS, Martins RN, Smith MA, Perry G (2002) Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides 23:1343–1350PubMedGoogle Scholar
  17. Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276:34156–34161PubMedGoogle Scholar
  18. Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by A beta 16–22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759PubMedGoogle Scholar
  19. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674PubMedGoogle Scholar
  20. Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277:21140–21148PubMedGoogle Scholar
  21. Baxa U, Cheng N, Winkler DC, Chiu TK, Davies DR, Sharma D, Inouye H, Kirschner DA, Wickner RB, Steven AC (2005) Filaments of the Ure2p prion protein have a cross-beta core structure. J Struct Biol 150:170–179PubMedGoogle Scholar
  22. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827PubMedGoogle Scholar
  23. Bellotti V, Mangione P, Merlini G (2000) Review: immunoglobulin light chain amyloidosis—the archetype of structural and pathogenic variability. J Struct Biol 130:280–289PubMedGoogle Scholar
  24. Benson MD, Liepnieks J, Uemichi T, Wheeler G, Correa R (1993) Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain. Nat Genet 3:252–255PubMedGoogle Scholar
  25. Benson MD, Liepnieks JJ, Yazaki M, Yamashita T, Hamidi Asl K, Guenther B, Kluve-Beckerman B (2001) A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 72:272–277PubMedGoogle Scholar
  26. Bergstrom J, Murphy C, Eulitz M, Weiss DT, Westermark GT, Solomon A, Westermark P (2001) Codeposition of apolipoprotein A-IV and transthyretin in senile systemic (ATTR) amyloidosis. Biochem Biophys Res Commun 285:903–908PubMedGoogle Scholar
  27. Bergstrom J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P (2004) Two different types of amyloid deposits—apolipoprotein A-IV and transthyretin—in a patient with systemic amyloidosis. Lab Invest 84:981–988PubMedGoogle Scholar
  28. Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161:521–533PubMedGoogle Scholar
  29. Bieri O, Wildegger G, Bachmann A, Wagner C, Kiefhaber T (1999) A salt-induced kinetic intermediate is on a new parallel pathway of lysozyme folding. Biochemistry 38:12460–12470PubMedGoogle Scholar
  30. Bironaite D, Lindgren S, Janciauskiene S, Dichtl W, Moraga F, Ares MP, Crisby M, Nilsson J, Carlemalm E, Eriksson S (2001) Fibrillogenic C-terminal fragment of alpha-1-antitrypsin activates human monocytes via oxidative mechanisms. Cell Tissue Res 305:87–98PubMedGoogle Scholar
  31. Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184PubMedGoogle Scholar
  32. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003a) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335PubMedGoogle Scholar
  33. Bitan G, Vollers SS, Teplow DB (2003b) Elucidation of primary structure elements controlling early amyloid beta-protein oligomerization. J Biol Chem 278:34882–34889PubMedGoogle Scholar
  34. Blake C, Serpell L (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4:989–998PubMedGoogle Scholar
  35. Bodles AM, Guthrie DJS, Greer B, Irvine GB (2001) Identification of the region of non-Ab component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity. J Neurochem 78:384–395PubMedGoogle Scholar
  36. Bohne S, Sletten K, Menard R, Buhling F, Vockler S, Wrenger E, Roessner A, Rocken C (2004) Cleavage of AL amyloid proteins and AL amyloid deposits by cathepsins B, K, and L. J Pathol 203:528–537PubMedGoogle Scholar
  37. Bollen YJ, Sanchez IE, van Mierlo CP (2004) Formation of on- and off-pathway intermediates in the folding kinetics of Azotobacter vinelandii apoflavodoxin. Biochemistry 43:10475–10489PubMedGoogle Scholar
  38. Bouchard M, Zurdo J, Nettleton E, Dobson C, Robinson C (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9:1960–1967PubMedGoogle Scholar
  39. Bouma B, Kroon-Batenburg LM, Wu YP, Brunjes B, Posthuma G, Kranenburg O, de Groot PG, Voest EE, Gebbink MF (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J Biol Chem 278:41810–41819PubMedGoogle Scholar
  40. Bousset L, Briki F, Doucet J, Melki R (2003) The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J Struct Biol 141:132–142PubMedGoogle Scholar
  41. Brais B (2003) Oculopharyngeal muscular dystrophy: a late-onset polyalanine disease. Cytogenet Genome Res 100:252–260PubMedGoogle Scholar
  42. Breslau NA (2000) Calcium homeostasis. In: Griffin JA, Ojeda SR (eds) Textbook of endocrine physiology, 4th edn. Oxford University Press, New YorkGoogle Scholar
  43. Briknarova K, Akerman ME, Hoyt DW, Ruoslahti E, Ely KR (2003) Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J Mol Biol 332:205–215PubMedGoogle Scholar
  44. Broome BM, Hecht MH (2000) Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J Mol Biol 296:961–968PubMedGoogle Scholar
  45. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39PubMedGoogle Scholar
  46. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511PubMedGoogle Scholar
  47. Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382PubMedGoogle Scholar
  48. Bunn CW, Garner EV (1947) The crystal structure of two polyamides (‘nylons’). Proc R Soc Lond Ser A 189:39–68Google Scholar
  49. Burke MJ, Rougvie MA (1972) Cross-protein structures. I. Insulin fibrils. Biochemistry 11:2435–2439PubMedGoogle Scholar
  50. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28PubMedGoogle Scholar
  51. Bush AI (2003) The metallobiology of Alzheimer's disease. Trends Neurosci 26:207–214PubMedGoogle Scholar
  52. Butterfield DA, Martin L, Carney JM, Hensley K (1996) A beta (25–35) peptide displays H2O2-like reactivity towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins. Life Sci 58:217–228PubMedGoogle Scholar
  53. Buxbaum JN (2003) Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases? Trends Biochem Sci 28:585–592PubMedGoogle Scholar
  54. Calado A, Tome FM, Brais B, Rouleau GA, Kuhn U, Wahle E, Carmo-Fonseca M (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 9:2321–2328PubMedGoogle Scholar
  55. Calamai M, Taddei N, Stefani M, Ramponi G, Chiti F (2003) Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins. Biochemistry 42:15078–15083PubMedGoogle Scholar
  56. Calamai M, Canale C, Relini A, Stefani M, Chiti F, Dobson CM (2005) Reversal of protein aggregation provides evidence for multiple aggregated states. J Mol Biol 346:603–616PubMedGoogle Scholar
  57. Cannon MJ, Williams AD, Wetzel R, Myszka DG (2004) Kinetic analysis of beta-amyloid fibril elongation. Anal Biochem 328:67–75PubMedGoogle Scholar
  58. Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 280:30001–30008PubMedGoogle Scholar
  59. Carulla N, Caddy GL, Hall DR, Zurdo J, Gairi M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558PubMedGoogle Scholar
  60. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855PubMedGoogle Scholar
  61. Chauhan A, Ray I, Chauhan VP (2000) Interaction of amyloid beta-protein with anionic phospholipids: possible involvement of Lys28 and C-terminus aliphatic amino acids. Neurochem Res 25:423–429PubMedGoogle Scholar
  62. Chen CD, Huff ME, Matteson J, Page L, Phillips R, Kelly JW, Balch WE (2001a) Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization. EMBO J 20:6277–6287PubMedGoogle Scholar
  63. Chen S, Berthelier V, Yang W, Wetzel R (2001b) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311:173–182PubMedGoogle Scholar
  64. Chen S, Berthelier V, Hamilton JB, O'Nuallain B, Wetzel R (2002) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41:7391–7399PubMedGoogle Scholar
  65. Chen YW, Dokholyan NV (2005) A single disulfide bond differentiates aggregation pathways of beta 2-microglobulin. J Mol Biol 354:473–482PubMedGoogle Scholar
  66. Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI (1999) Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem 274:23223–23228PubMedGoogle Scholar
  67. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594PubMedGoogle Scholar
  68. Chiti F, Taddei N, Bucciantini M, White P, Ramponi G, Dobson CM (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J 19:1441–1449PubMedGoogle Scholar
  69. Chiti F, Bucciantini M, Capanni C, Taddei N, Dobson CM, Stefani M (2001) Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci 10:2541–2547PubMedGoogle Scholar
  70. Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002a) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci USA 99(Suppl 4):16419–16426PubMedGoogle Scholar
  71. Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson CM (2002b) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9:137–143PubMedGoogle Scholar
  72. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808PubMedGoogle Scholar
  73. Chow MK, Paulson HL, Bottomley SP (2004) Destabilization of a non-pathological variant of ataxin-3 results in fibrillogenesis via a partially folded intermediate: a model for misfolding in polyglutamine disease. J Mol Biol 335:333–341PubMedGoogle Scholar
  74. Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Abeta(1–42) into globular neurotoxins. Biochemistry 42:12749–12760PubMedGoogle Scholar
  75. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726PubMedGoogle Scholar
  76. Clark PL (2004) Protein folding in the cell: reshaping the folding funnel. Trends Biochem Sci 29:527–534PubMedGoogle Scholar
  77. Cohen AS, Calkins E (1959) Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183:1202–1203PubMedGoogle Scholar
  78. Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819PubMedGoogle Scholar
  79. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077PubMedGoogle Scholar
  80. Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2:e321PubMedGoogle Scholar
  81. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781PubMedGoogle Scholar
  82. Cordes MH, Walsh NP, McKnight CJ, Sauer RT (2003) Solution structure of switch Arc, a mutant with 3(10) helices replacing a wild-type beta-ribbon. J Mol Biol 326:899–909PubMedGoogle Scholar
  83. Cottingham MG, Hollinshead MS, Vaux DJ (2002) Amyloid fibril formation by a synthetic peptide from a region of human acetylcholinesterase that is homologous to the Alzheimer's amyloid-beta peptide. Biochemistry 41:13539–13547PubMedGoogle Scholar
  84. Coustou-Linares V, Maddelein ML, Begueret J, Saupe SJ (2001) In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol 42:1325–1335PubMedGoogle Scholar
  85. Cribbs DH, Azizeh BY, Cotman CW, LaFerla FM (2000) Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer's A beta peptide. Biochemistry 39:5988–5994PubMedGoogle Scholar
  86. Damaschun G, Damaschun H, Gast K, Zirwer D (1999) Proteins can adopt totally different folded conformations. J Mol Biol 291:715–725PubMedGoogle Scholar
  87. Damaschun G, Damaschun H, Fabian H, Gast K, Krober R, Wieske M, Zirwer D (2000) Conversion of yeast phosphoglycerate kinase into amyloid-like structure. Proteins 39:204–211PubMedGoogle Scholar
  88. Darnell RB (2003) Memory, synaptic translation, and...prions? Cell 115:767–768PubMedGoogle Scholar
  89. de Groot NS, Ventura S (2005) Amyloid fibril formation by bovine cytochrome c. Spectroscopy 19:199–205Google Scholar
  90. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913PubMedGoogle Scholar
  91. Dehner A, Planker E, Gemmecker G, Broxterman QB, Bisson W, Formaggio F, Crisma M, Toniolo C, Kessler H (2001) Solution structure, dimerization, and dynamics of a lipophilic alpha/3(10)-helical, C alpha-methylated peptide. Implications for folding of membrane proteins. J Am Chem Soc 123:6678–6686PubMedGoogle Scholar
  92. Delano WL (2005) MacPyMOL: a PyMOL-based molecular graphics application for MacOS X. DeLano Scientific, South San FranciscoGoogle Scholar
  93. deMello DE, Lin Z (2001) Pulmonary alveolar proteinosis: a review. Pediatr Pathol Mol Med 20:413–432PubMedGoogle Scholar
  94. Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 101:12934–12939PubMedGoogle Scholar
  95. Diaz-Avalos R, Long C, Fontano E, Balbirnie M, Grothe R, Eisenberg D, Caspar DL (2003) Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. J Mol Biol 330:1165–1175PubMedGoogle Scholar
  96. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332PubMedGoogle Scholar
  97. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890PubMedGoogle Scholar
  98. Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15:3–16PubMedGoogle Scholar
  99. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer's disease model. Nat Neurosci 5:452–457PubMedGoogle Scholar
  100. Doig AJ, Williams DH (1992) Why water-soluble, compact, globular proteins have similar specific enthalpies of unfolding at 110 degrees C. Biochemistry 31:9371–9375PubMedGoogle Scholar
  101. Dong A, Matsuura J, Manning MC, Carpenter JF (1998) Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study. Arch Biochem Biophys 355:275–281PubMedGoogle Scholar
  102. Dos Reis S, Coulary-Salin B, Forge V, Lascu I, Begueret J, Saupe SJ (2002) The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem 277:5703–5706PubMedGoogle Scholar
  103. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076PubMedGoogle Scholar
  104. Du HN, Tang L, Luo XY, Li HT, Hu J, Zhou JW, Hu HY (2003) A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein. Biochemistry 42:8870–8878PubMedGoogle Scholar
  105. Dzwolak W, Muraki T, Kato M, Taniguchi Y (2004) Chain-length dependence of alpha-helix to beta-sheet transition in polylysine: model of protein aggregation studied by temperature-tuned FTIR spectroscopy. Biopolymers 73:463–469PubMedGoogle Scholar
  106. Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656PubMedGoogle Scholar
  107. Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13:202–208PubMedGoogle Scholar
  108. el-Agnaf OM, Irvine GB (2002) Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem Soc Trans 30:559–565PubMedGoogle Scholar
  109. Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO, Hart PJ (2003) Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Biol 10:461–467PubMedGoogle Scholar
  110. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740PubMedGoogle Scholar
  111. Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39:6288–6295PubMedGoogle Scholar
  112. Esteban JA (2004) Living with the enemy: a physiological role for the beta-amyloid peptide. Trends Neurosci 27:1–3PubMedGoogle Scholar
  113. Eulitz M, Weiss DT, Solomon A (1990) Immunoglobulin heavy-chain-associated amyloidosis. Proc Natl Acad Sci USA 87:6542–6546PubMedGoogle Scholar
  114. Fadika GO, Baumann M (2002) Peptides corresponding to gelsolin derived amyloid of the Finnish type (AGelFIN) adopt two distinct forms in solution of which only one can polymerize into amyloid fibrils and form complexes with apoE. Amyloid 9:75–82PubMedGoogle Scholar
  115. Fändrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:5682–5690PubMedGoogle Scholar
  116. Fändrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166PubMedGoogle Scholar
  117. Fändrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci USA 100:15463–15468PubMedGoogle Scholar
  118. Fairlie DP, West ML, Wong AK (1998) Towards protein surface mimetics. Curr Med Chem 5:29–62PubMedGoogle Scholar
  119. Fairlie DP, Tyndall JD, Reid RC, Wong AK, Abbenante G, Scanlon MJ, March DR, Bergman DA, Chai CL, Burkett BA (2000) Conformational selection of inhibitors and substrates by proteolytic enzymes: implications for drug design and polypeptide processing. J Med Chem 43:1271–1281PubMedGoogle Scholar
  120. Fan X, Rouleau GA (2003) Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy. Can J Neurol Sci 30:8–14PubMedGoogle Scholar
  121. Farrell HM Jr, Cooke PH, Wickham ED, Piotrowski EG, Hoagland PD (2003) Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273PubMedGoogle Scholar
  122. Fay N, Inoue Y, Bousset L, Taguchi H, Melki R (2003) Assembly of the yeast prion Ure2p into protein fibrils. Thermodynamic and kinetic characterization. J Biol Chem 278:30199–30205PubMedGoogle Scholar
  123. Ferguson N, Berriman J, Petrovich M, Sharpe TD, Finch JT, Fersht AR (2003) Rapid amyloid fiber formation from the fast-folding WW domain FBP28. Proc Natl Acad Sci USA 100:9814–9819PubMedGoogle Scholar
  124. Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253PubMedGoogle Scholar
  125. Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem 277:36948–36954PubMedGoogle Scholar
  126. Fezoui Y, Hartley DM, Walsh DM, Selkoe DJ, Osterhout JJ, Teplow DB (2000) A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils. Nat Struct Biol 7:1095–1099PubMedGoogle Scholar
  127. Figueroa KP, Pulst SM (2003) Identification and expression of the gene for human ataxin-2-related protein on chromosome 16. Exp Neurol 184:669–678PubMedGoogle Scholar
  128. Florio T, Paludi D, Villa V, Principe DR, Corsaro A, Millo E, Damonte G, D'Arrigo C, Russo C, Schettini G, Aceto A (2003) Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. J Neurochem 85:62–72PubMedGoogle Scholar
  129. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546PubMedGoogle Scholar
  130. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:100–107Google Scholar
  131. Fraser PE, Nguyen JT, Inouye H, Surewicz WK, Selkoe DJ, Podlisny MB, Kirschner DA (1992) Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid beta-protein. Biochemistry 31:10716–10723PubMedGoogle Scholar
  132. Fujimoto N, Yajima M, Ohnishi Y, Tajima S, Ishibashi A, Hata Y, Enomoto U, Konohana I, Wachi H, Seyama Y (2002) Advanced glycation end product-modified beta 2-microglobulin is a component of amyloid fibrils of primary localized cutaneous nodular amyloidosis. J Invest Dermatol 118:479–484PubMedGoogle Scholar
  133. Fukui T, Shiraki K, Hamada D, Hara K, Miyata T, Fujiwara S, Mayanagi K, Yanagihara K, Iida T, Fukusaki E, Imanaka T, Honda T, Yanagihara I (2005) Thermostable direct hemolysin of Vibrio parahaemolyticus is a bacterial reversible amyloid toxin. Biochemistry 44:9825–9832PubMedGoogle Scholar
  134. Funayama T, Mashima Y, Kawashima M, Yamada M (2006) Lattice corneal dystrophy type III in patients with a homozygous L527R mutation in the TGFBI gene. Jpn J Ophthalmol 50:62–64PubMedGoogle Scholar
  135. Fung SY, Keyes C, Duhamel J, Chen P (2003) Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys J 85:537–548PubMedGoogle Scholar
  136. Galea C, Bowman P, Kriwacki RW (2005) Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci 14:2993–3003PubMedGoogle Scholar
  137. Ganesh S, Tayakumar R (2003) Structural transitions involved in a novel amyloid-like beta sheet assemblage of tripeptide derivatives. Biopolymers 70:336–345PubMedGoogle Scholar
  138. Gasset M, Baldwin M, Lloyd D, Gabriel J, Holtzman D, Cohen F, Fletterick R, Prusiner S (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci USA 89:10940–10944PubMedGoogle Scholar
  139. Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83PubMedGoogle Scholar
  140. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA (2005) Amyloids—a functional coat for microorganisms. Nat Rev Microbiol 3:333–341PubMedGoogle Scholar
  141. Geddes AJ, Parker KD, Atkins ED, Beighton E (1968) Cross-beta' conformation in proteins. J Mol Biol 32:343–358PubMedGoogle Scholar
  142. Gerhartz B, Ekiel I, Abrahamson M (1998) Two stable unfolding intermediates of the disease-causing L68Q variant of human cystatin C. Biochemistry 37:17309–17317PubMedGoogle Scholar
  143. Ghiso J, Jensson O, Frangione B (1986) Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc Natl Acad Sci USA 83:2974–2978PubMedGoogle Scholar
  144. Giacomelli CE, Norde W (2003) Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide. Biomacromolecules 4:1719–1726PubMedGoogle Scholar
  145. Gibson G, El-Agnaf OM, Anwar Z, Sidera C, Isbister A, Austen BM (2005) Structure and neurotoxicity of novel amyloids derived from the BRI gene. Biochem Soc Trans 33:1111–1112PubMedGoogle Scholar
  146. Gillespie P, Cicariello J, Olson GL (1997) Conformational analysis of dipeptide mimetics. Biopolymers 43:191–217Google Scholar
  147. Giri K, Ghosh U, Bhattacharyya NP, Basak S (2003) Caspase 8 mediated apoptotic cell death induced by beta-sheet forming polyalanine peptides. FEBS Lett 555:380–384PubMedGoogle Scholar
  148. Gobbi M, Colombo L, Morbin M, Mazzoleni G, Accardo E, Vanoni M, Del Favero E, Cantu L, Kirschner DA, Manzoni C, Beeg M, Ceci P, Ubezio P, Forloni G, Tagliavini F, Salmona M (2006) Gerstmann-Straussler-Scheinker disease amyloid protein polymerizes according to the “dock-and-lock” model. J Biol Chem 281:843–849PubMedGoogle Scholar
  149. Gordon DJ, Balbach JJ, Tycko R, Meredith SC (2004) Increasing the amphiphilicity of an amyloidogenic peptide changes the beta-sheet structure in the fibrils from antiparallel to parallel. Biophys J 86:428–434PubMedGoogle Scholar
  150. Goux WJ, Kopplin L, Nguyen AD, Leak K, Rutkofsky M, Shanmuganandam VD, Sharma D, Inouye H, Kirschner DA (2004) The formation of straight and twisted filaments from short Tau peptides. J Biol Chem 279:26868–26875PubMedGoogle Scholar
  151. Graether SP, Slupsky CM, Sykes BD (2003) Freezing of a fish antifreeze protein results in amyloid fibril formation. Biophys J 84:552–557PubMedGoogle Scholar
  152. Greenfield S, Vaux DJ (2002) Parkinson's disease, Alzheimer's disease and motor neurone disease: identifying a common mechanism. Neuroscience 113:485–492PubMedGoogle Scholar
  153. Gregersen N, Bolund L, Bross P (2005) Protein misfolding, aggregation, and degradation in disease. Mol Biotechnol 31:141–150PubMedGoogle Scholar
  154. Gross M, Wilkins DK, Pitkeathly MC, Chung EW, Higham C, Clark A, Dobson CM (1999) Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB. Protein Sci 8:1350–1357PubMedGoogle Scholar
  155. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228PubMedGoogle Scholar
  156. Gupta-Bansal R, Frederickson RC, Brunden KR (1995) Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 270:18666–18671PubMedGoogle Scholar
  157. Gustavsson A, Engstrom U, Westermark P (1991) Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem Biophys Res Commun 175:1159–1164PubMedGoogle Scholar
  158. Haggqvist B, Naslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engstrom U, Westermark P (1999) Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 96:8669–8674PubMedGoogle Scholar
  159. Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649:127–139PubMedGoogle Scholar
  160. Halverson K, Fraser PE, Kirschner DA, Lansbury PT Jr (1990) Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments. Biochemistry 29:2639–2644PubMedGoogle Scholar
  161. Hamada D, Dobson CM (2002) A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci 11:2417–2426PubMedGoogle Scholar
  162. Hamilton JA, Benson MD (2001) Transthyretin: a review from a structural perspective. Cell Mol Life Sci 58:1491–1521PubMedGoogle Scholar
  163. Hammarström P, Jiang X, Hurshman AR, Powers ET, Kelly JW (2002) Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci USA 99(Suppl 4):16427–16432PubMedGoogle Scholar
  164. Hamodrakas SJ, Hoenger A, Iconomidou VA (2004) Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. J Struct Biol 145:226–235PubMedGoogle Scholar
  165. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407PubMedGoogle Scholar
  166. Harris JR (2002) In vitro fibrillogenesis of the amyloid beta 1–42 peptide: cholesterol potentiation and aspirin inhibition. Micron 33:609–626PubMedGoogle Scholar
  167. Harris ME, Carney JM, Cole PS, Hensley K, Howard BJ, Martin L, Bummer P, Wang Y, Pedigo NW Jr, Butterfield DA (1995) beta-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer's disease. Neuroreport 6:1875–1879PubMedGoogle Scholar
  168. Hasegawa K, Ohhashi Y, Yamaguchi I, Takahashi N, Tsutsumi S, Goto Y, Gejyo F, Naiki H (2003) Amyloidogenic synthetic peptides of beta 2-microglobulin—a role of the disulfide bond. Biochem Biophys Res Commun 304:101–106PubMedGoogle Scholar
  169. Hatters DM, Minton AP, Howlett GJ (2002) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem 277:7824–7830PubMedGoogle Scholar
  170. He Y, Zhou H, Tang H, Luo Y (2006) Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin. J Biol Chem 281:1048–1057PubMedGoogle Scholar
  171. Hearing VJ (2000) The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res 13:23–34PubMedGoogle Scholar
  172. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876PubMedGoogle Scholar
  173. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270–3274PubMedGoogle Scholar
  174. Hensley K, Aksenova M, Carney JM, Harris M, Butterfield DA (1995) Amyloid beta-peptide spin trapping. I. Peptide enzyme toxicity is related to free radical spin trap reactivity. Neuroreport 6:489–492PubMedGoogle Scholar
  175. Hirano K, Hotta Y, Fujiki K, Kanai A (2000) Corneal amyloidosis caused by Leu518Pro mutation of betaig-h3 gene. Br J Ophthalmol 84:583–585PubMedGoogle Scholar
  176. Hirschfield GM (2004) Amyloidosis: a clinico-pathophysiological synopsis. Semin Cell Dev Biol 15:39–44PubMedGoogle Scholar
  177. Holmes SE, O'Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, Fleisher A, Stevanin G, Brice A, Potter NT, Ross CA, Margolis RL (2001) A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet 29:377–378PubMedGoogle Scholar
  178. Hong DP, Fink AL (2005) Independent heterologous fibrillation of insulin and its B-chain peptide. Biochemistry 44:16701–16709PubMedGoogle Scholar
  179. Hosia W, Johansson J, Griffiths WJ (2002) Hydrogen/deuterium exchange and aggregation of a polyvaline and a polyleucine alpha-helix investigated by matrix-assisted laser desorption ionization mass spectrometry. Mol Cell Proteomics 1:592–597PubMedGoogle Scholar
  180. Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V (2002) Dependence of alpha-synuclein aggregate morphology on solution conditions. J Mol Biol 322:383–393PubMedGoogle Scholar
  181. Hua QX, Weiss MA (2004) Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem 279:21449–21460PubMedGoogle Scholar
  182. Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 24:217–233PubMedGoogle Scholar
  183. Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer's Abeta 1–40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470PubMedGoogle Scholar
  184. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116PubMedGoogle Scholar
  185. Hurshman AR, White JT, Powers ET, Kelly JW (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43:7365–7381PubMedGoogle Scholar
  186. Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479:141–145PubMedGoogle Scholar
  187. Inouye H, Kirschner DA (2000) A beta fibrillogenesis: kinetic parameters for fibril formation from Congo red binding. J Struct Biol 130:123–129PubMedGoogle Scholar
  188. Inouye H, Fraser PE, Kirschner DA (1993) Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J 64:502–519PubMedGoogle Scholar
  189. Inouye H, Bond JE, Deverin SP, Lim A, Costello CE, Kirschner DA (2002) Molecular organization of amyloid protofilament-like assembly of betabellin 15D: helical array of beta-sandwiches. Biophys J 83:1716–1727PubMedGoogle Scholar
  190. Isobe T, Osserman EF (1974) Patterns of amyloidosis and their association with plasma cell dyscrasias, monoclonal immunoglobulins and Bence Jones proteins. N Engl J Med 290:473–477PubMedGoogle Scholar
  191. Ivanova MI, Gingery M, Whitson LJ, Eisenberg D (2003) Role of the C-terminal 28 residues of beta 2-microglobulin in amyloid fibril formation. Biochemistry 42:13536–13540PubMedGoogle Scholar
  192. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of beta 2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA 103:18119–18124PubMedGoogle Scholar
  193. Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201PubMedGoogle Scholar
  194. Janciauskiene S, Carlemalm E, Eriksson S (1995) In vitro fibril formation from alpha 1-antitrypsin-derived C-terminal peptides. Biol Chem Hoppe Seyler 376:415–423PubMedGoogle Scholar
  195. Janowski R, Kozak M, Abrahamson M, Grubb A, Jaskolski M (2005) 3D domain-swapped human cystatin c with amyloid-like intermolecular beta-sheets. Proteins 61:570–578PubMedGoogle Scholar
  196. Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88:1344–1353PubMedGoogle Scholar
  197. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99:16748–16753PubMedGoogle Scholar
  198. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697PubMedGoogle Scholar
  199. Jenko S, Skarabot M, Kenig M, Guncar G, Musevic I, Turk D, Zerovnik E (2004) Different propensity to form amyloid fibrils by two homologous proteins-Human stefins A and B: searching for an explanation. Proteins 55:417–425PubMedGoogle Scholar
  200. Johansson B, Wernstedt C, Westermark P (1987) Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem Biophys Res Commun 148:1087–1092PubMedGoogle Scholar
  201. John V, Latimer LH, Tung JS, Dappen MS (1997) Alzheimer's disease: recent advances on the amyloid hypothesis. Annu Rep Med Chem 32:11–20Google Scholar
  202. Jones S, Manning J, Kad NM, Radford SE (2003) Amyloid-forming peptides from beta 2-microglobulin—insights into the mechanism of fibril formation in vitro. J Mol Biol 325:249–257PubMedGoogle Scholar
  203. Kad NM, Myers SL, Smith DP, Smith DA, Radford SE, Thomson NH (2003) Hierarchical assembly of beta 2-microglobulin amyloid in vitro revealed by atomic force microscopy. J Mol Biol 330:785–797PubMedGoogle Scholar
  204. Kagan BL, Hirakura Y, Azimov R, Azimova R (2001) The channel hypothesis of Huntington's disease. Brain Res Bull 56:281–284PubMedGoogle Scholar
  205. Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276:12945–12950PubMedGoogle Scholar
  206. Kallijärvi J, Haltia M, Baumann MH (2001) Amphoterin includes a sequence motif which is homologous to the Alzheimer's beta-amyloid peptide (Abeta), forms amyloid fibrils in vitro, and binds avidly to Abeta. Biochemistry 40:10032–10037PubMedGoogle Scholar
  207. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937PubMedGoogle Scholar
  208. Kamihira M, Naito A, Tuzi S, Nosaka AY, Saito H (2000) Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci 9:867–877PubMedGoogle Scholar
  209. Kammerer RA, Kostrewa D, Zurdo J, Detken A, Garcia-Echeverria C, Green JD, Muller SA, Meier BH, Winkler FK, Dobson CM, Steinmetz MO (2004) Exploring amyloid formation by a de novo design. Proc Natl Acad Sci USA 101:4435–4440PubMedGoogle Scholar
  210. Kanazawa I (1998) Dentatorubral-pallidoluysian atrophy or Naito-Oyanagi disease. Neurogenetics 2:1–17PubMedGoogle Scholar
  211. Kaneko I, Morimoto K, Kubo T (2001) Drastic neuronal loss in vivo by beta-amyloid racemized at Ser(26) residue: conversion of non-toxic [D-Ser(26)]beta-amyloid 1–40 to toxic and proteinase-resistant fragments. Neuroscience 104:1003–1011PubMedGoogle Scholar
  212. Karsai A, Martonfalvi Z, Nagy A, Grama L, Penke B, Kellermayer MS (2006) Mechanical manipulation of Alzheimer's amyloid beta 1–42 fibrils. J Struct Biol 155:316–326PubMedGoogle Scholar
  213. Katsuno M, Adachi H, Tanaka F, Sobue G (2004) Spinal and bulbar muscular atrophy: ligand-dependent pathogenesis and therapeutic perspectives. J Mol Med 82:298–307PubMedGoogle Scholar
  214. Kaul R, Balaram P (1999) Stereochemical control of peptide folding. Bioorg Med Chem 7:105–117PubMedGoogle Scholar
  215. Kawasaki S, Nishida K, Quantock AJ, Dota A, Bennett K, Kinoshita S (1999) Amyloid and Pro501 Thr-mutated (beta)ig-h3 gene product colocalize in lattice corneal dystrophy type IIIA. Am J Ophthalmol 127:456–458PubMedGoogle Scholar
  216. Kawooya JK, Emmons TL, Gonzalez-DeWhitt PA, Camp MC, D'Andrea SC (2003) Electrophoretic mobility of Alzheimer's amyloid-beta peptides in urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 323:103–113PubMedGoogle Scholar
  217. Kay CJ (1997) Mechanochemical mechanism for peptidyl free radical generation by amyloid fibrils. FEBS Lett 403:230–235PubMedGoogle Scholar
  218. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489PubMedGoogle Scholar
  219. Kelly JF, Furukawa K, Barger SW, Rengen MR, Mark RJ, Blanc EM, Roth GS, Mattson MP (1996) Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci USA 93:6753–6758PubMedGoogle Scholar
  220. Kelly JW, Balch WE (2003) Amyloid as a natural product. J Cell Biol 161:461–462PubMedGoogle Scholar
  221. Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269:4159–4163PubMedGoogle Scholar
  222. Kiefhaber T (1995) Kinetic traps in lysozyme folding. Proc Natl Acad Sci USA 92:9029–9033PubMedGoogle Scholar
  223. Kim JL, Nikolov DB, Burley SK (1993a) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365:520–527PubMedGoogle Scholar
  224. Kim Y, Geiger JH, Hahn S, Sigler PB (1993b) Crystal structure of a yeast TBP/TATA-box complex. Nature 365:512–520PubMedGoogle Scholar
  225. Kim YS, Randolph TW, Stevens FJ, Carpenter JF (2002) Kinetics and energetics of assembly, nucleation, and growth of aggregates and fibrils for an amyloidogenic protein. Insights into transition states from pressure, temperature, and co-solute studies. J Biol Chem 277:27240–27246PubMedGoogle Scholar
  226. Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312:1103–1119PubMedGoogle Scholar
  227. Kishikawa M, Nakanishi T, Miyazaki A, Hatanaka M, Shimizu A, Tamoto S, Ohsawa N, Hayashi H, Kanai M (1998) A new nonamyloid transthyretin variant, G101S, detected by electrospray ionization/mass spectrometry. Mutations in brief No. 201. Online. Hum Mutat 12:363PubMedGoogle Scholar
  228. Kishikawa M, Sass JO, Sakura N, Nakanishi T, Shimizu A, Yoshioka M (2002) The peak height ratio of S-sulfonated transthyretin and other oxidized isoforms as a marker for molybdenum cofactor deficiency, measured by electrospray ionization mass spectrometry. Biochim Biophys Acta 1588:135–138PubMedGoogle Scholar
  229. Kishimoto A, Hasegawa K, Suzuki H, Taguchi H, Namba K, Yoshida M (2004) beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem Biophys Res Commun 315:739–745PubMedGoogle Scholar
  230. Kiuru S (1998) Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid 5:55–66PubMedGoogle Scholar
  231. Klein WL, Stine WB Jr, Teplow DB (2004) Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiol Aging 25:569–580PubMedGoogle Scholar
  232. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol 309:285–305PubMedGoogle Scholar
  233. Knauer MF, Soreghan B, Burdick D, Kosmoski J, Glabe CG (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci USA 89:7437–7441PubMedGoogle Scholar
  234. Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508PubMedGoogle Scholar
  235. Koga T, Taguchi K, Kobuke Y, Kinoshita T, Higuchi M (2003) Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation. Chemistry 9:1146–1156PubMedGoogle Scholar
  236. Konno T (2001) Multistep nucleus formation and a separate subunit contribution of the amyloidgenesis of heat-denatured monellin. Protein Sci 10:2093–2101PubMedGoogle Scholar
  237. Koscielska-Kasprzak K, Otlewski J (2003) Amyloid-forming peptides selected proteolytically from phage display library. Protein Sci 12:1675–1685PubMedGoogle Scholar
  238. Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH (2002) Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J Neurosci 22:6331–6335PubMedGoogle Scholar
  239. Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci USA 96:3688–3693PubMedGoogle Scholar
  240. Kranenburg O, Kroon-Batenburg LM, Reijerkerk A, Wu YP, Voest EE, Gebbink MF (2003) Recombinant endostatin forms amyloid fibrils that bind and are cytotoxic to murine neuroblastoma cells in vitro. FEBS Lett 539:149–155PubMedGoogle Scholar
  241. Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300:541–549PubMedGoogle Scholar
  242. Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1–40) to truncated and toxic fragments ([D-Ser 26]A beta 25–35/40) and fragment presence in the brains of Alzheimer's patients. J Neurosci Res 70:474–483PubMedGoogle Scholar
  243. Kumita JR, Weston CJ, Choo-Smith LP, Woolley GA, Smart OS (2003) Prevention of peptide fibril formation in an aqueous environment by mutation of a single residue to Aib. Biochemistry 42:4492–4498PubMedGoogle Scholar
  244. Kwiatkowski DJ, Stossel TP, Orkin SH, Mole JE, Colten HR, Yin HL (1986) Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323:455–458PubMedGoogle Scholar
  245. La Spada AR, Taylor JP (2003) Polyglutamines placed into context. Neuron 38:681–684PubMedGoogle Scholar
  246. Lachmann HJ, Hawkins PN (2006) Systemic amyloidosis. Curr Opin Pharmacol 6:214–220PubMedGoogle Scholar
  247. Lansbury PT Jr, Costa PR, Griffiths JM, Simon EJ, Auger M, Halverson KJ, Kocisko DA, Hendsch ZS, Ashburn TT, Spencer RG, et al (1995) Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol 2:990–998PubMedGoogle Scholar
  248. Lashuel HA, LaBrenz SR, Woo L, Serpell LC, Kelly JW (2000) Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: implications for amyloid fibril formation and materials science. J Am Chem Soc 122:5262–5277Google Scholar
  249. Lavrikova MA, Zamotin VV, Malisauskas M, Chertkova RV, Kostanyan IA, Dolgikh DA, Kirpichnikov MP, Morozova-Roche LA (2006) Amyloidogenic properties of the artificial protein albebetin and its biologically active derivatives. The role of electrostatic interactions in fibril formation. Biochemistry (Mosc) 71:306–314Google Scholar
  250. Lebre AS, Brice A (2003) Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 100:154–163PubMedGoogle Scholar
  251. Lee AS, Galea C, DiGiammarino EL, Jun B, Murti G, Ribeiro RC, Zambetti G, Schultz CP, Kriwacki RW (2003) Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. J Mol Biol 327:699–709PubMedGoogle Scholar
  252. LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284PubMedGoogle Scholar
  253. Lieberman M, Sasaki TJ (1991) Iron(II) organizes a synthetic peptide into three-helix bundles. J Am Chem Soc 113:1470–1471Google Scholar
  254. Lim A, Makhov AM, Bond J, Inouye H, Connors LH, Griffith JD, Erickson BW, Kirschner DA, Costello CE (2000) Betabellins 15D and 16D, de novo designed beta-sandwich proteins that have amyloidogenic properties. J Struct Biol 130:363–370PubMedGoogle Scholar
  255. Lim A, Prokaeva T, McComb ME, Connors LH, Skinner M, Costello CE (2003a) Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis. Protein Sci 12:1775–1785PubMedGoogle Scholar
  256. Lim A, Sengupta S, McComb ME, Theberge R, Wilson WG, Costello CE, Jacobsen DW (2003b) In vitro and in vivo interactions of homocysteine with human plasma transthyretin. J Biol Chem 278:49707–49713PubMedGoogle Scholar
  257. Limprasert P, Nouri N, Nopparatana C, Deininger PL, Keats BJ (1997) Comparative studies of the CAG repeats in the spinocerebellar ataxia type 1 (SCA1) gene. Am J Med Genet 74:488–493PubMedGoogle Scholar
  258. Linke RP, Joswig R, Murphy CL, Wang S, Zhou H, Gross U, Rocken C, Westermark P, Weiss DT, Solomon A (2005) Senile seminal vesicle amyloid is derived from semenogelin I. J Lab Clin Med 145:187–193PubMedGoogle Scholar
  259. Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 280:245–258PubMedGoogle Scholar
  260. Liu W, Crocker E, Zhang W, Elliott JI, Luy B, Li H, Aimoto S, Smith SO (2005) Structural role of glycine in amyloid fibrils formed from transmembrane alpha-helices. Biochemistry 44:3591–3597PubMedGoogle Scholar
  261. Loferer H, Hammar M, Normark S (1997) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23PubMedGoogle Scholar
  262. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129PubMedGoogle Scholar
  263. Lopez de la Paz ML, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA 101:87–92PubMedGoogle Scholar
  264. Lopez de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L (2002) De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci USA 99:16052–16057PubMedGoogle Scholar
  265. Lopez de la Paz M, de Mori GM, Serrano L, Colombo G (2005) Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. J Mol Biol 349:583–596PubMedGoogle Scholar
  266. Losic D, Martin LL, Mechler A, Aguilar MI, Small DH (2006) High resolution scanning tunnelling microscopy of the beta-amyloid protein (Abeta 1–40) of Alzheimer's disease suggests a novel mechanism of oligomer assembly. J Struct Biol 155:104–110PubMedGoogle Scholar
  267. Loughlin WA, Tyndall JD, Glenn MP, Fairlie DP (2004) Beta-strand mimetics. Chem Rev 104:6085–6117PubMedGoogle Scholar
  268. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer's amyloid-beta(1–42) fibrils. Proc Natl Acad Sci USA 102:17342–17347PubMedGoogle Scholar
  269. Ma B, Nussinov R (2002) Molecular dynamics simulations of alanine rich beta-sheet oligomers: insight into amyloid formation. Protein Sci 11:2335–2350PubMedGoogle Scholar
  270. Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91PubMedGoogle Scholar
  271. Makin OS, Serpell LC (2002) Examining the structure of the mature amyloid fibril. Biochem Soc Trans 30:521–525PubMedGoogle Scholar
  272. Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961PubMedGoogle Scholar
  273. Malinchik SB, Inouye H, Szumowski KE, Kirschner DA (1998) Structural analysis of Alzheimer's beta(1–40) amyloid: protofilament assembly of tubular fibrils. Biophys J 74:537–545PubMedGoogle Scholar
  274. Malisauskas M, Zamotin V, Jass J, Noppe W, Dobson CM, Morozova-Roche LA (2003) Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration. J Mol Biol 330:879–890PubMedGoogle Scholar
  275. Mantuano E, Veneziano L, Jodice C, Frontali M (2003) Spinocerebellar ataxia type 6 and episodic ataxia type 2: differences and similarities between two allelic disorders. Cytogenet Genome Res 100:147–153PubMedGoogle Scholar
  276. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147PubMedGoogle Scholar
  277. Marks MS, Seabra MC (2001) The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2:738–748PubMedGoogle Scholar
  278. Massi F, Straub JE (2001) Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation. Proteins 42:217–229PubMedGoogle Scholar
  279. Matsunaga N, Anan I, Forsgren S, Nagai R, Rosenberg P, Horiuchi S, Ando Y, Suhr OB (2002) Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-kappaB activation. Acta Neuropathol (Berl) 104:441–447Google Scholar
  280. Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430:631–639PubMedGoogle Scholar
  281. Maury CP (1991) Gelsolin-related amyloidosis. Identification of the amyloid protein in Finnish hereditary amyloidosis as a fragment of variant gelsolin. J Clin Invest 87:1195–1199PubMedGoogle Scholar
  282. Maury CP, Nurmiaho-Lassila EL, Rossi H (1994) Amyloid fibril formation in gelsolin-derived amyloidosis. Definition of the amyloidogenic region and evidence of accelerated amyloid formation of mutant Asn-187 and Tyr-187 gelsolin peptides. Lab Invest 70:558–564PubMedGoogle Scholar
  283. Maury CP, Nurmiaho-Lassila EL, Liljestrom M (1997) Alzheimer's disease-associated presenilins 1 and 2: accelerated amyloid fibril formation of mutant 410 Cys->Tyr and 141 Asn->Ile peptides. Biochem Biophys Res Commun 235:249–252PubMedGoogle Scholar
  284. Maury CP, Nurmiaho-Lassila EL, Boysen G, Liljestrom M (2003) Fibrillogenesis in gelsolin-related familial amyloidosis. Amyloid 10(Suppl 1):21–25PubMedGoogle Scholar
  285. McDuff FO, Doucet A, Beauregard M (2004) Low concentration of guanidine hydrochloride induces the formation of an aggregation-prone state in alpha-urease. Biochem Cell Biol 82:305–313PubMedGoogle Scholar
  286. Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee CE (2004) Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem 279:3413–3419PubMedGoogle Scholar
  287. Merlini G, Westermark P (2004) The systemic amyloidoses: clearer understanding of the molecular mechanisms offers hope for more effective therapies. J Intern Med 255:159–178PubMedGoogle Scholar
  288. Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97:11910–11915PubMedGoogle Scholar
  289. Michne WF, Schroeder JD (1996) Design and synthesis of a beta-strand inducer. Application to ICAM-1/LFA-1 mediated cellular adhesion. Int J Pept Protein Res 47:2–8PubMedGoogle Scholar
  290. Mira H, Vilar M, Esteve V, Martinell M, Kogan MJ, Giralt E, Salom D, Mingarro I, Penarrubia L, Perez-Paya E (2004) Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein. BMC Struct Biol 4:7PubMedGoogle Scholar
  291. Miura T, Mitani S, Takanashi C, Mochizuki N (2004) Copper selectively triggers beta-sheet assembly of an N-terminally truncated amyloid beta-peptide beginning with Glu3. J Inorg Biochem 98:10–14PubMedGoogle Scholar
  292. Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers—a novel pathway of amyloid formation. J Mol Biol 325:135–148PubMedGoogle Scholar
  293. Monti M, Garolla di Bard BL, Calloni G, Chiti F, Amoresano A, Ramponi G, Pucci P (2004) The regions of the sequence most exposed to the solvent within the amyloidogenic state of a protein initiate the aggregation process. J Mol Biol 336:253–262PubMedGoogle Scholar
  294. Morel B, Casares S, Conejero-Lara F (2006) A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 356:453–468PubMedGoogle Scholar
  295. Morgan CJ, Gelfand M, Atreya C, Miranker AD (2001) Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. J Mol Biol 309:339–345PubMedGoogle Scholar
  296. Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4:155–174PubMedGoogle Scholar
  297. Mutter M, Vuilleumier S (1989) A chemical approach to protein design—template-assembled synthetic proteins (TASPs). Angew Chem Int Ed Engl 28:535–554Google Scholar
  298. Myers JK, Pace CN, Scholtz JM (1998) Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1. Protein Sci 7:383–388PubMedGoogle Scholar
  299. Naito A, Kamihira M, Inoue R, Saito H (2004) Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy. Magn Reson Chem 42:247–257PubMedGoogle Scholar
  300. Nakagawa Asahina S, Fujiki K, Enomoto Y, Murakami A, Kanai A (2004) Case of late onset and isolated lattice corneal dystrophy with Asn544Ser (N544S) mutation of transforming growth factor beta-induced (TGFBI, BIGH3) gene. Nippon Ganka Gakkai Zasshi 108:618–620PubMedGoogle Scholar
  301. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448PubMedGoogle Scholar
  302. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778PubMedGoogle Scholar
  303. Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV (2000) Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J 79:1053–1065PubMedGoogle Scholar
  304. Nichols MR, Moss MA, Reed DK, Lin WL, Mukhopadhyay R, Hoh JH, Rosenberry TL (2002) Growth of beta-amyloid(1–40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127PubMedGoogle Scholar
  305. Niewold TA, Murphy CL, Hulskamp-Koch CA, Tooten PC, Gruys E (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid 6:244–249PubMedGoogle Scholar
  306. Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK (1995) Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128PubMedGoogle Scholar
  307. Nilsson G, Gustafsson M, Vandenbussche G, Veldhuizen E, Griffiths WJ, Sjovall J, Haagsman HP, Ruysschaert JM, Robertson B, Curstedt T, Johansson J (1998) Synthetic peptide-containing surfactants—evaluation of transmembrane versus amphipathic helices and surfactant protein C poly-valyl to poly-leucyl substitution. Eur J Biochem 255:116–124PubMedGoogle Scholar
  308. Nilsson M, Wang X, Rodziewicz-Motowidlo S, Janowski R, Lindstrom V, Onnerfjord P, Westermark G, Grzonka Z, Jaskolski M, Grubb A (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C—Use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245PubMedGoogle Scholar
  309. Nilsson MR, Dobson CM (2003) In vitro characterization of lactoferrin aggregation and amyloid formation. Biochemistry 42:375–382PubMedGoogle Scholar
  310. Nilsson MR, Raleigh DP (1999) Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J Mol Biol 294:1375–1385PubMedGoogle Scholar
  311. Nilsson MR, Driscoll M, Raleigh DP (2002) Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: implications for the study of amyloid formation. Protein Sci 11:342–349PubMedGoogle Scholar
  312. O'Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651PubMedGoogle Scholar
  313. O'Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279:17490–17499PubMedGoogle Scholar
  314. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421PubMedGoogle Scholar
  315. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332PubMedGoogle Scholar
  316. Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM (2006) A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol 168:184–194PubMedGoogle Scholar
  317. Ohashi K, Kisilevsky R, Yanagishita M (2002) Affinity binding of glycosaminoglycans with beta(2)-microglobulin. Nephron 90:158–168PubMedGoogle Scholar
  318. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655PubMedGoogle Scholar
  319. Olsen A, Wick MJ, Morgelin M, Bjorck L (1998) Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect Immun 66:944–949PubMedGoogle Scholar
  320. Otzen DE, Oliveberg M (1999) Salt-induced detour through compact regions of the protein folding landscape. Proc Natl Acad Sci USA 96:11746–11751PubMedGoogle Scholar
  321. Otzen DE, Kristensen O, Oliveberg M (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci USA 97:9907–9912PubMedGoogle Scholar
  322. Oyanagi S (2000) Hereditary dentatorubral-pallidoluysian atrophy. Neuropathology 20(Suppl):S42–S46PubMedGoogle Scholar
  323. Päiviö A, Nordling E, Kallberg Y, Thyberg J, Johansson J (2004) Stabilization of discordant helices in amyloid fibril-forming proteins. Protein Sci 13:1251–1259PubMedGoogle Scholar
  324. Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state. Biophys J 81:1805–1822PubMedGoogle Scholar
  325. Parrini C, Taddei N, Ramazzotti M, Degl'Innocenti D, Ramponi G, Dobson CM, Chiti F (2005) Glycine residues appear to be evolutionarily conserved for their ability to inhibit aggregation. Structure (Camb) 13:1143–1151Google Scholar
  326. Pavlov NA, Cherny DI, Heim G, Jovin TM, Subramaniam V (2002) Amyloid fibrils from the mammalian protein prothymosin alpha. FEBS Lett 517:37–40PubMedGoogle Scholar
  327. Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350:379–392PubMedGoogle Scholar
  328. Pengo P, Pasquato L, Moro S, Brigo A, Fogolari F, Broxterman QB, Kaptein B, Scrimin P (2003) Quantitative correlation of solvent polarity with the alpha-/3(10)-helix equilibrium: a heptapeptide behaves as a solvent-driven molecular spring. Angew Chem Int Ed Engl 42:3388–3392PubMedGoogle Scholar
  329. Pepys MB, Rademacher TW, Amatayakul-Chantler S, Williams P, Noble GE, Hutchinson WL, Hawkins PN, Nelson SR, Gallimore JR, Herbert J, et al (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc Natl Acad Sci USA 91:5602–5606PubMedGoogle Scholar
  330. Pertinhez TA, Bouchard M, Tomlinson EJ, Wain R, Ferguson SJ, Dobson CM, Smith LJ (2001) Amyloid fibril formation by a helical cytochrome. FEBS Lett 495:184–186PubMedGoogle Scholar
  331. Pertinhez TA, Bouchard M, Smith RA, Dobson CM, Smith LJ (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Lett 529:193–197PubMedGoogle Scholar
  332. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers—their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358PubMedGoogle Scholar
  333. Perutz MF, Finch JT, Berriman J, Lesk A (2002a) Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci USA 99:5591–5595PubMedGoogle Scholar
  334. Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002b) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA 99:5596–5600PubMedGoogle Scholar
  335. Petchanikow C, Saborio GP, Anderes L, Frossard MJ, Olmedo MI, Soto C (2001) Biochemical and structural studies of the prion protein polymorphism. FEBS Lett 509:451–456PubMedGoogle Scholar
  336. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747PubMedGoogle Scholar
  337. Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335:247–260PubMedGoogle Scholar
  338. Pettersson TM, Carlstrom A, Ehrenberg A, Jornvall H (1989) Transthyretin microheterogeneity and thyroxine binding are influenced by non-amino acid components and glutathione constituents. Biochem Biophys Res Commun 158:341–347PubMedGoogle Scholar
  339. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64:253–265PubMedGoogle Scholar
  340. Plakoutsi G, Taddei N, Stefani M, Chiti F (2004) Aggregation of the Acylphosphatase from Sulfolobus solfataricus: the folded and partially unfolded states can both be precursors for amyloid formation. J Biol Chem 279:14111–14119PubMedGoogle Scholar
  341. Podesta A, Tiana G, Milani P, Manno M (2006) Early events in insulin fibrillization studied by time-lapse atomic force microscopy. Biophys J 90:589–597PubMedGoogle Scholar
  342. Polverino de Laureto P, Taddei N, Frare E, Capanni C, Costantini S, Zurdo J, Chiti F, Dobson CM, Fontana A (2003) Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J Mol Biol 334:129–141PubMedGoogle Scholar
  343. Porat Y, Stepensky A, Ding FX, Naider F, Gazit E (2003) Completely different amyloidogenic potential of nearly identical peptide fragments. Biopolymers 69:161–164PubMedGoogle Scholar
  344. Prusiner SB, DeArmond SJ (1994) Prion diseases and neurodegeneration. Annu Rev Neurosci 17:311–339PubMedGoogle Scholar
  345. Qian Y, Blaskovich MA, Saleem M, Seong CM, Wathen SP, Hamilton AD, Sebti SM (1994) Design and structural requirements of potent peptidomimetic inhibitors of p21ras farnesyltransferase. J Biol Chem 269:12410–12413PubMedGoogle Scholar
  346. Ramirez-Alvarado M, Merkel JS, Regan L (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA 97:8979–8984PubMedGoogle Scholar
  347. Rankin J, Wyttenbach A, Rubinsztein DC (2000) Intracellular green fluorescent protein-polyalanine aggregates are associated with cell death. Biochem J 348:15–19PubMedGoogle Scholar
  348. Raposo G, Marks MS (2002) The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 3:237–248PubMedGoogle Scholar
  349. Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson's disease. Proc Natl Acad Sci USA 102:4294–4299PubMedGoogle Scholar
  350. Rauk A, Armstrong DA, Fairlie DP (2000) Is oxidative damage by beta-amyloid and prion peptides mediated by hydrogen atom transfer from glycine alpha-carbon to methionine sulfur within beta-sheets? J Am Chem Soc 122:9761–9767Google Scholar
  351. Raumann BE, Rould MA, Pabo CO, Sauer RT (1994) DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 367:754–757PubMedGoogle Scholar
  352. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627PubMedGoogle Scholar
  353. Reches M, Porat Y, Gazit E (2002) Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 277:35475–35480PubMedGoogle Scholar
  354. Relini A, Torrassa S, Rolandi R, Gliozzi A, Rosano C, Canale C, Bolognesi M, Plakoutsi G, Bucciantini M, Chiti F, Stefani M (2004) Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J Mol Biol 338:943–957PubMedGoogle Scholar
  355. Richardson JS, Richardson DC (2002) Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99:2754–2759PubMedGoogle Scholar
  356. Rocken C, Becker K, Fandrich M, Schroeckh V, Stix B, Rath T, Kahne T, Dierkes J, Roessner A, Albert FW (2006) ALys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum Mutat 27:119–120PubMedGoogle Scholar
  357. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62PubMedGoogle Scholar
  358. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35:819–822PubMedGoogle Scholar
  359. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700PubMedGoogle Scholar
  360. Sadqi M, Hernandez F, Pan U, Perez M, Schaeberle MD, Avila J, Munoz V (2002) Alpha-helix structure in Alzheimer's disease aggregates of tau-protein. Biochemistry 41:7150–7155PubMedGoogle Scholar
  361. Sanchez de Groot N, Pallares I, Aviles FX, Vendrell J, Ventura S (2005) Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol 5:18PubMedGoogle Scholar
  362. Sasaki T, Kaiser ET (1989) Helichrome: synthesis and enzymic activity of a designed hemeprotein. J Am Chem Soc 111:380–381Google Scholar
  363. Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins; mechanism of transcription factor deactivation. Mol Cell 15:95–105PubMedGoogle Scholar
  364. Scheibel T, Bloom J, Lindquist SL (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc Natl Acad Sci USA 101:2287–2292PubMedGoogle Scholar
  365. Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111PubMedGoogle Scholar
  366. Schmitt-Bernard CF, Chavanieu A, Derancourt J, Arnaud B, Demaille JG, Calas B, Argiles A (2000) In vitro creation of amyloid fibrils from native and Arg124Cys mutated betaIGH3 (110–131) peptides, and its relevance for lattice corneal amyloid dystrophy type I. Biochem Biophys Res Commun 273:649–653PubMedGoogle Scholar
  367. Schmittschmitt JP, Scholtz JM (2003) The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci 12:2374–2378PubMedGoogle Scholar
  368. Scholtz JM, Baldwin RL (1992) The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct 21:95–118PubMedGoogle Scholar
  369. Schwartz R, Istrail S, King J (2001) Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Sci 10:1023–1031PubMedGoogle Scholar
  370. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Hook M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181PubMedGoogle Scholar
  371. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904PubMedGoogle Scholar
  372. Serpell LC (2000) Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30PubMedGoogle Scholar
  373. Serpell LC, Fraser PE, Sunde M (1999) X-ray fiber diffraction of amyloid fibrils. Methods Enzymol 309:526–536PubMedGoogle Scholar
  374. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97:4897–4902PubMedGoogle Scholar
  375. Seymour JF, Presneill JJ (2002) Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 166:215–235PubMedGoogle Scholar
  376. Shehi E, Fusi P, Secundo F, Pozzuolo S, Bairati A, Tortora P (2003) Temperature-dependent, irreversible formation of amyloid fibrils by a soluble human ataxin-3 carrying a moderately expanded polyglutamine stretch (Q36). Biochemistry 42:14626–14632PubMedGoogle Scholar
  377. Shibata A, Yamamoto M, Yamashita T, Chiou JS, Kamaya H, Ueda I (1992) Biphasic effects of alcohols on the phase transition of poly (L-Lysine) between alpha-helix and beta-sheet conformations. Biochemistry 31:5728–733PubMedGoogle Scholar
  378. Shimizu A, Yamada Y, Mizuta T, Haseba T, Sugaia S (2004) The contribution of the dynamic behavior of a water molecule to the amyloid formation of yeast alcohol dehydrogenase. J Mol Liquids 109:45–52Google Scholar
  379. Shortle D, Stites WE, Meeker AK (1990) Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29:8033–8041PubMedGoogle Scholar
  380. Shtilerman MD, Ding TT, Lansbury PT Jr (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41:3855–3860PubMedGoogle Scholar
  381. Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891PubMedGoogle Scholar
  382. Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed Engl 44:2441–2444PubMedGoogle Scholar
  383. Sikorski P, Atkins ED, Serpell LC (2003) Structure and texture of fibrous crystals formed by Alzheimer's Abeta(11–25) peptide fragment. Structure (Camb) 11:915–926Google Scholar
  384. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146PubMedGoogle Scholar
  385. Sinha N, Tsai CJ, Nussinov R (2001) A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. Protein Eng 14:93–103PubMedGoogle Scholar
  386. Sirangelo I, Malmo C, Iannuzzi C, Mezzogiorno A, Bianco MR, Papa M, Irace G (2004) Fibrillogenesis and cytotoxic activity of the amyloid-forming apomyoglobin mutant W7FW14F. J Biol Chem 279:13183–13189PubMedGoogle Scholar
  387. Solomon A, Frangione B, Franklin EC (1982) Bence Jones proteins and light chain of immunoglobulins. Preferential association of the gamma VI subgroup of human light chains with amyloidosis AL. J Clin Invest 70:453–460PubMedGoogle Scholar
  388. Solomon A, Murphy CL, Weaver K, Weiss DT, Hrncic R, Eulitz M, Donnell RL, Sletten K, Westermark G, Westermark P (2003) Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein. J Lab Clin Med 142:348–355PubMedGoogle Scholar
  389. Somers WS, Phillips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by beta-strands. Nature 359:387–393PubMedGoogle Scholar
  390. Soreghan B, Kosmoski J, Glabe C (1994) Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 269:28551–28554PubMedGoogle Scholar
  391. Soto C, Castano EM, Kumar RA, Beavis RC, Frangione B (1995) Fibrillogenesis of synthetic amyloid-beta peptides is dependent on their initial secondary structure. Neurosci Lett 200:105–108PubMedGoogle Scholar
  392. Souillac PO, Uversky VN, Fink AL (2003) Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry 42:8094–8104PubMedGoogle Scholar
  393. Srisailam S, Wang HM, Kumar TK, Rajalingam D, Sivaraja V, Sheu HS, Chang YC, Yu C (2002) Amyloid-like fibril formation in an all beta-barrel protein involves the formation of partially structured intermediate(s). J Biol Chem 277:19027–19036PubMedGoogle Scholar
  394. Srisailam S, Kumar TK, Rajalingam D, Kathir KM, Sheu HS, Jan FJ, Chao PC, Yu C (2003) Amyloid-like fibril formation in an all beta-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. J Biol Chem 278:17701–17709PubMedGoogle Scholar
  395. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699PubMedGoogle Scholar
  396. Storkel S, Schneider HM, Muntefering H, Kashiwagi S (1983) Iatrogenic, insulin-dependent, local amyloidosis. Lab Invest 48:108–111PubMedGoogle Scholar
  397. Suk JY, Zhang F, Balch WE, Linhardt RJ, Kelly JW (2006) Heparin accelerates gelsolin amyloidogenesis. Biochemistry 45:2234–2242PubMedGoogle Scholar
  398. Tahmassebi DC, Sasaki T (1998) Synthesis of a three-helix bundle protein by reductive amination. J Org Chem 63:728–731PubMedGoogle Scholar
  399. Takahashi Y, Ueno A, Mihara H (2002) Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils. Chembiochem 3:637–642PubMedGoogle Scholar
  400. Tcherkasskaya O, Sanders W, Chynwat V, Davidson EA, Orser CS (2003) The role of hydrophobic interactions in amyloidogenesis: example of prion-related polypeptides. J Biomol Struct Dyn 21:353–365PubMedGoogle Scholar
  401. Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A (2000) Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J Mol Biol 295:1055–1071PubMedGoogle Scholar
  402. Terazaki H, Ando Y, Suhr O, Ohlsson PI, Obayashi K, Yamashita T, Yoshimatsu S, Suga M, Uchino M, Ando M (1998) Post-translational modification of transthyretin in plasma. Biochem Biophys Res Commun 249:26–30PubMedGoogle Scholar
  403. Tian X, Fujiki K, Wang W, Murakami A, Xie P, Kanai A, Liu Z (2005) Novel mutation (V505D) of the TGFBI gene found in a Chinese family with lattice corneal dystrophy, type I. Jpn J Ophthalmol 49:84–88PubMedGoogle Scholar
  404. Tjernberg L, Hosia W, Bark N, Thyberg J, Johansson J (2002) Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. J Biol Chem 277:43243–43246PubMedGoogle Scholar
  405. Tjernberg LO, Naslund J, Lindqvist F, Johansson J, Karlstrom AR, Thyberg J, Terenius L, Nordstedt C (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548PubMedGoogle Scholar
  406. Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Nordstedt C (1999) A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 274:12619–12625PubMedGoogle Scholar
  407. Tomiyama T, Asano S, Furiya Y, Shirasawa T, Endo N, Mori H (1994) Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. J Biol Chem 269:10205–10208PubMedGoogle Scholar
  408. Toniolo C, Benedetti E (1991) The polypeptide 310-helix. Trends Biochem Sci 16:350–353PubMedGoogle Scholar
  409. Toniolo C, Crisma M, Formaggio F, Valle G, Cavicchioni G, Precigoux G, Aubry A, Kamphuis J (1993) Structures of peptides from alpha-amino acids methylated at the alpha-carbon. Biopolymers 33:1061–1072PubMedGoogle Scholar
  410. Tracz SM, Abedini A, Driscoll M, Raleigh DP (2004) Role of aromatic interactions in amyloid formation by peptides derived from human Amylin. Biochemistry 43:15901–15908PubMedGoogle Scholar
  411. Trapnell BC, Whitsett JA, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539PubMedGoogle Scholar
  412. Tsuji S (1999) Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features and molecular genetics. Adv Neurol 79:399–409PubMedGoogle Scholar
  413. Tsuji S (2004) Spinocerebellar ataxia type 17: latest member of polyglutamine disease group highlights unanswered questions. Arch Neurol 61:183–184PubMedGoogle Scholar
  414. Tyndall JD, Fairlie DP (1999) Conformational homogeneity in molecular recognition by proteolytic enzymes. J Mol Recognit 12:363–370PubMedGoogle Scholar
  415. Tyndall JD, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–999PubMedGoogle Scholar
  416. Uegaki K, Nakamura T, Yamamoto H, Kobayashi A, Odahara T, Harata K, Hagihara Y, Ueyama N, Yamazaki T, Yumoto N (2005) Amyloid fibril formation by the CAD domain of caspase-activated DNase. Biopolymers 79:39–47PubMedGoogle Scholar
  417. Uemichi T, Liepnieks JJ, Benson MD (1994) Hereditary renal amyloidosis with a novel variant fibrinogen. J Clin Invest 93:731–736PubMedGoogle Scholar
  418. Uemichi T, Liepnieks JJ, Yamada T, Gertz MA, Bang N, Benson MD (1996) A frame shift mutation in the fibrinogen A alpha chain gene in a kindred with renal amyloidosis. Blood 87:4197–4203PubMedGoogle Scholar
  419. Uptain SM, Lindquist S (2002) Prions as protein-based genetic elements. Annu Rev Microbiol 56:703–741PubMedGoogle Scholar
  420. Uversky VN, Cooper EM, Bower KS, Li J, Fink AL (2002) Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett 515:99–103PubMedGoogle Scholar
  421. Villanueva J, Villegas V, Querol E, Aviles FX, Serrano L (2003) Monitoring disappearance of monomers and generation of resistance to proteolysis during the formation of the activation domain of human procarboxypeptidase A2 (ADA2 h) amyloid fibrils by matrix-assisted laser-desorption ionization-time-of-flight-MS. Biochem J 374:489–495PubMedGoogle Scholar
  422. Villegas V, Zurdo J, Filimonov VV, Aviles FX, Dobson CM, Serrano L (2000) Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci 9:1700–1708PubMedGoogle Scholar
  423. Volles MJ, Lansbury PT Jr (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 42:7871–7878PubMedGoogle Scholar
  424. Walling HW, Baldassare JJ, Westfall TC (1998) Molecular aspects of Huntington's disease. J Neurosci Res 54:301–308PubMedGoogle Scholar
  425. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952PubMedGoogle Scholar
  426. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557PubMedGoogle Scholar
  427. Wang J, Gulich S, Bradford C, Ramirez-Alvarado M, Regan L (2005) A twisted four-sheeted model for an amyloid fibril. Structure 13:1279–1288PubMedGoogle Scholar
  428. Wang L, Colon W (2005) Urea-induced denaturation of apolipoprotein serum amyloid A reveals marginal stability of hexamer. Protein Sci 14:1811–1817PubMedGoogle Scholar
  429. Wang W, Hecht MH (2002) Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins. Proc Natl Acad Sci USA 99:2760–2765PubMedGoogle Scholar
  430. Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of methionine-oxidized amyloid beta.-peptide (1–40). Does oxidation affect conformational switching? Biochemistry 37:12700–12706PubMedGoogle Scholar
  431. Waugh DF (1957) A mechanism for the formation of fibrils from protein molecules. J Cell Physiol 49:145–164Google Scholar
  432. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci USA 96:11211–11216PubMedGoogle Scholar
  433. Westermark GT, Engstrom U, Westermark P (1992) The N-terminal segment of protein AA determines its fibrillogenic property. Biochem Biophys Res Commun 182:27–33PubMedGoogle Scholar
  434. Westermark P (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J 272:5942–5949PubMedGoogle Scholar
  435. Westermark P, Eriksson L, Engstrom U, Enestrom S, Sletten K (1997) Prolactin-derived amyloid in the aging pituitary gland. Am J Pathol 150:67–73PubMedGoogle Scholar
  436. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda SI, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2005) Amyloid: toward terminology clarification—report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12:1–4PubMedGoogle Scholar
  437. Wetzel R (2002) Ideas of order for amyloid fibril structure. Structure (Camb) 10:1031–1036Google Scholar
  438. Wigley WC, Corboy MJ, Cutler TD, Thibodeau PH, Oldan J, Lee MG, Rizo J, Hunt JF, Thomas PJ (2002) A protein sequence that can encode native structure by disfavoring alternate conformations. Nat Struct Biol 9:381–388PubMedGoogle Scholar
  439. Wilkins DK, Dobson CM, Gross M (2000) Biophysical studies of the development of amyloid fibrils from a peptide fragment of cold shock protein B. Eur J Biochem 267:2609–2616PubMedGoogle Scholar
  440. Williams AD, Shivaprasad S, Wetzel R (2006) Alanine scanning mutagenesis of Abeta(1–40) amyloid fibril stability. J Mol Biol 357:1283–1294PubMedGoogle Scholar
  441. Wong AK, Jacobsen MP, Winzor DJ, Fairlie DP (1998) Template assembled synthetic proteins (TASPs). Are template size, shape, and directionality important in formation of four-helix bundles? J Am Chem Soc 120:3836–3841Google Scholar
  442. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881PubMedGoogle Scholar
  443. Xiong H, Buckwalter B, Shieh H, Hecht M (1995) Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci USA 92:6349–6353PubMedGoogle Scholar
  444. Xu S, Bevis B, Arnsdorf MF (2001) The assembly of amyloidogenic yeast Sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophys J 81:446–454PubMedGoogle Scholar
  445. Yamaguchi I, Suda H, Tsuzuike N, Seto K, Seki M, Yamaguchi Y, Hasegawa K, Takahashi N, Yamamoto S, Gejyo F, Naiki H (2003) Glycosaminoglycan and proteoglycan inhibit the depolymerization of beta 2-microglobulin amyloid fibrils in vitro. Kidney Int 64:1080–1088PubMedGoogle Scholar
  446. Yang SC, Levine H, Onuchic JN (2005) Protein oligomerization through domain swapping: role of inter-molecular interactions and protein concentration. J Mol Biol 352:202–211PubMedGoogle Scholar
  447. Yazaki M, Varga J, Dyck PJ, Benson MD (2002) A new transthyretin variant Leu55Gln in a patient with systemic amyloidosis. Amyloid 9:268–271PubMedGoogle Scholar
  448. Yin HL (1987) Gelsolin: calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays 7:176–179PubMedGoogle Scholar
  449. Yoburn JC, Tian W, Brower JO, Nowick JS, Glabe CG, Van Vranken DL (2003) Dityrosine cross-linked Abeta peptides: fibrillar beta-structure in Abeta(1–40) is conducive to formation of dityrosine cross-links but a dityrosine cross-link in Abeta(8–14) does not induce beta-structure. Chem Res Toxicol 16:531–535PubMedGoogle Scholar
  450. Yoder G, Polese A, Silva R, Formaggio F, Crisma M, Broxterman QB, Kamphuis J, Toniolo C, Keiderling TA (1997) Conformational characterization of terminally blocked L-(alpha Me)Val homopeptides using vibrational and electronic circular dichroism. 3(10)-helical stabilization by peptide-peptide interaction. J Am Chem Soc 119:10278–10285Google Scholar
  451. Yong W, Lomakin A, Kirkitadze MD, Teplow DB, Chen SH, Benedek GB (2002) Structure determination of micelle-like intermediates in amyloid beta -protein fibril assembly by using small angle neutron scattering. Proc Natl Acad Sci USA 99:150–154PubMedGoogle Scholar
  452. Yutani K, Takayama G, Goda S, Yamagata Y, Maki S, Namba K, Tsunasawa S, Ogasahara K (2000) The process of amyloid-like fibril formation by methionine aminopeptidase from a hyperthermophile, Pyrococcus furiosus. Biochemistry 39:2769–2777PubMedGoogle Scholar
  453. Zerovnik E (2002) Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur J Biochem 269:3362–3371PubMedGoogle Scholar
  454. Zerovnik E, Pompe-Novak M, Skarabot M, Ravnikar M, Musevic I, Turk V (2002) Human stefin B readily forms amyloid fibrils in vitro. Biochim Biophys Acta 1594:1–5PubMedGoogle Scholar
  455. Zhang KZ, Kaufman RJ (2006) The unfolded protein response—a stress signaling pathway critical for health and disease. Neurology 66:S102–S109PubMedGoogle Scholar
  456. Zhang Q, Kelly JW (2003) Cys10 mixed disulfides make transthyretin more amyloidogenic under mildly acidic conditions. Biochemistry 42:8756–8761PubMedGoogle Scholar
  457. Zhao H, Jutila A, Nurminen T, Wickstrom SA, Keski-Oja J, Kinnunen PK (2005) Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers. Biochemistry 44:2857–2863PubMedGoogle Scholar
  458. Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL (2002) Surface-catalyzed amyloid fibril formation. J Biol Chem 277:50914–50922PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. S. Harrison
    • 1
  • P. C. Sharpe
    • 1
  • Y. Singh
    • 1
  • D. P. Fairlie
    • 1
    Email author
  1. 1.Centre for Drug Design and DevelopmentInstitute for Molecular BioscienceBrisbaneAustralia

Personalised recommendations