Skip to main content

Structures Related to the Emplacement of Shallow-Level Intrusions

  • Chapter
  • First Online:
Physical Geology of Shallow Magmatic Systems

Abstract

A systematic view of the vast nomenclature used to describe the structures of shallow-level intrusions is presented here. Structures are organised in four main groups, according to logical breaks in the timing of magma emplacement, independent of the scales of features: (1) Intrusion-related structures, formed as the magma is making space and then develops into its intrusion shape; (2) Magmatic flow-related structures, developed as magma moves with suspended crystals that are free to rotate; (3) Solid-state, flow-related structures that formed in portions of the intrusions affected by continuing flow of nearby magma, therefore considered to have a syn-magmatic, non-tectonic origin; (4) Thermal and fragmental structures, related to creation of space and impact on host materials. This scheme appears as a rational organisation, helpful in describing and interpreting the large variety of structures observed in shallow-level intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim Cosmochim Acta 74(24):7179–7195

    Google Scholar 

  • Adamovic J (2006) Thermal effects of magma emplacement and the origin of columnar jointing in host sandstone. Vis Geosci 72–74

    Google Scholar 

  • Aguirre-Díaz GJ, Labarthe-Hernández G (2003) Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting. Geology 31:773–776

    Google Scholar 

  • Almond DC (1971) Ignimbrite vents in the Sabaloka cauldron. Sudan Geol Mag 108:159–176

    Google Scholar 

  • Anderson EM (1938) The dynamics of sheet intrusion. Proc R Soc Edinb 58:242–251

    Google Scholar 

  • Archanjo CJ, Launeau P, Bouchez J-L (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil). Phys Earth Planet Inter 89:63–75

    Google Scholar 

  • Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publication, pp 51–66

    Google Scholar 

  • Baer G, Reches Z (1987) Flow patterns of magma in dikes, Makhtesh Ramon, Israel. Geology 15(6):569–572

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond A225:49–63

    Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80(1–4):155–177

    Google Scholar 

  • Bédard JHJ, Marsh BD, Hersum TG, Naslund HR, Mukasa SB (2007) Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar Dolerites, McMurdo Dry Valleys, Antarctica: petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. J Petrol 48(12):2289–2326

    Google Scholar 

  • Bermúdez A, Delpino D (2008) Concentric and radial joint systems within basic sills and their associated porosity enhancement, Neuquén Basin, Argentina. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geological Society, London, Special Publications, pp 185–198

    Google Scholar 

  • Blanchard J-P, Boyer P, Gagny C (1977) Un nouveau critère de sens de mise an place dans une caisse filonienne: le “pincement” des mineraux aux épontes. Tectonophys. 53:1–25

    Google Scholar 

  • Blumenfeld P, Bouchez J-L (1988) Shear criteria in granite and migmatite deformed in the magmatic and solid states. J Struct Geol 10(4):361–372

    Google Scholar 

  • Bons PD, Druguet E, Hamann I, Carreras J, Passchier CW (2004) Apparent boudinage in dykes. J Struct Geol 26(4):625–636

    Google Scholar 

  • Borradaile G (1987) Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophys. 138:327–329

    Google Scholar 

  • Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophys. 156:1–20

    Google Scholar 

  • Borradaile GJ (1991) Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure appl Geophys 135:15–29

    Google Scholar 

  • Borradaile GJ (2001) Magnetic fabrics and petrofabrics: their orientation distributions and anisotropies. J Struct Geol 23:1581–1596

    Google Scholar 

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42(1):49–93

    Google Scholar 

  • Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 299–360

    Google Scholar 

  • Bouchez J-L (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez J-L, Hutton DHW, Stephens WE (eds) Granites: from segregation of melts to emplacement fabrics. Kluwer, Dordrecht, pp 95–112

    Google Scholar 

  • Breitkreuz C (2013) Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volc 75(4):1–16

    Google Scholar 

  • Breitkreuz C, Petford N (eds) (2004) Physical Geology of High-Level Magmatic Systems. In: Geological Society, London, Special Publication, vol 234, p 253

    Google Scholar 

  • Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2):B02203

    Google Scholar 

  • Busby-Spera CJ, White JDL (1987) Variation in peperite textures associated with differing host-sediment properties. Bull Volc 49:765–775

    Google Scholar 

  • Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17

    Google Scholar 

  • Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, Van Hoorebeke L, Jacobs P (2006) Recent progress in X-ray CT as a geosciences tool. Appl Geochem 21:826–832

    Google Scholar 

  • Correa-Gomes LC, Souza Filho CR, Martins CJFN, Oliveira EP (2001) Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. J Struct Geol 23(9):1415–1428

    Google Scholar 

  • Corry CE (1988) Laccoliths—mechanics of emplacement and growth. Geol Soc Am Spec Pap 220:110

    Google Scholar 

  • Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303–315

    Google Scholar 

  • Cruden A, McCaffrey K (2002) Different scaling laws for sills, laccoliths and plutons: mechanical thresholds on roof lifting and floor depression. In: Breitkreuz C, Mock A, Petford N (eds) Physical geology of subvolcanic systems—Laccolith, Sills and Dykes (LASI). Freiberg, 12–14 October 2002, pp 15–17

    Google Scholar 

  • de Saint-Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31

    Google Scholar 

  • Dini A, Corretti A, Innocenti F, Rocchi S, Westerman DS (2007) Sooty sweat stains or tourmaline spots? The Argonauts on the Island of Elba (Tuscany) and the spread of Greek trading in the Mediterranean Sea. In: Piccardi L, Masse WB (eds) Myth and geology, vol 273. Geological Society, Special Publications, London, pp 227–243

    Google Scholar 

  • Dutrow BL, Travis BJ, Gable CW, Henry DJ (2001) Coupled heat and silica transport associated with dike intrusion into sedimentary rock: effects on isotherm location and permeability evolution. Geochim Cosmochim Acta 65:3749–3767

    Google Scholar 

  • Eide CH, Schofield N, Jerram DA, Howell JA (2017) Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland. J Geol Soc 174(1):23–40

    Google Scholar 

  • Ekren EB, Byers FM (1976) Ash-flow fissure vent in west-central Nevada. Geology 4(4):247–251

    Google Scholar 

  • Eriksson PI, Riishuus MS, Sigmundsson F, Elming SÅ (2011) Magma flow directions inferred from field evidence and magnetic fabric studies of the Streitishvarf composite dike in east Iceland. J Volcanol Geoth Res 206(1–2):30–45

    Google Scholar 

  • Farina F, Dini A, Innocenti F, Rocchi S, Westerman DS (2010) Rapid incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by downward stacking of magma sheets. Geol Soc Am Bull 122(9/10):1463–1479

    Google Scholar 

  • Fernandez A, Laporte D (1991) Significance of low symmetry fabrics in magmatic rocks. J Struct Geol 13:337–347

    Google Scholar 

  • Flinn D (1962) On folding during three-dimensional progressive deformation. Quarterly. Quaterly J Geol Soc 118(1–4):385–428

    Google Scholar 

  • Gilbert GK (1877) Report on the geology of Henry Mountains. In: Department of the Interior, U.S. Geographical and Geological Survey of the Rocky Mountain Region. Washington D.C. Government Printing Office, p 160

    Google Scholar 

  • Graham JW (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol Soc Am Bull 65:1257–1258

    Google Scholar 

  • Grégoire V, Darrozes J, Gaillot P, Nédélec A, Launeau P (1998) Magnetite grain shape fabric and distribution anisotropy vs. rock magnetic fabric: A three-dimensional case study. J Struct Geol 20(7):937–944

    Google Scholar 

  • Habert G, de Saint-Blanquat M (2004) Rate of construction of the Black Mesa bysmalith, Henry Mountains, Utah. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publication, pp 163–173

    Google Scholar 

  • Halls H, Fahrig W (1987) Mafic dyke swarms: a collection of papers based on the proceedings of an international conference on mafic dyke swarms held at Erindale College, University of Toronto, Ontario, Canada, 4–7 June 1985. Geological Association of Canada

    Google Scholar 

  • Horsman E, Tikoff B, Morgan S (2005) Emplacement-related fabric and multiple sheets in the Maiden Creek sill, Henry Mountains, Utah, USA. J Struct Geol 27:1426–1444

    Article  Google Scholar 

  • Horsman E, Morgan S, de Saint-Blanquat M, Habert G, Hunter R, Nugent A, Tikoff B (2009) Emplacement and assembly of shallow plutons through multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100:1–16

    Google Scholar 

  • Horsman E, Morgan S, de Saint-Blanquat M, Tikoff B (2010) Emplacement and assembly of shallow intrusions, Henry Mountains, Southern Utah. LASI V Conference, Field trip guidebook

    Google Scholar 

  • Hrouda F (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys Earth Planet Inter 77:237–249

    Google Scholar 

  • Hunt CB (1953) Geology and geography of the Henry Mountains region, Utah. U.S. Geological Survey, Professional Paper 228, p 234

    Google Scholar 

  • Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Petrol Geosci 15:269–278

    Google Scholar 

  • Jackson MD, Pollard DD (1988) The laccolith-stock controversy: new results from the southern Henry Mountains, Utah. Geol Soc Am Bull 100:117–139

    Google Scholar 

  • Jackson MD, Pollard DD (1990) Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. J Struct Geol 12(2):185–206

    Google Scholar 

  • Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Breitkreuz C, Petford N (eds) Physical Geology of High-Level Magmatic Systems. Geological Society, London, Special Publication, pp 229–232

    Google Scholar 

  • Johnson A, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Fields observations, Gilbert’s model, physical properties and flow of the magma. Tectonophys 18:261–309

    Google Scholar 

  • Kano K, Matsuura H, Yamauchi S (1997) Miocene rhyolitic welded tuff infilling a funnel-shaped eruption conduit Shiotani, southeast of Matsue, SW Japan. Bull Volc 59(2):125–135

    Google Scholar 

  • Kerr AD, Pollard DD (1998) Toward more realistic formulations for the analysis of laccoliths. J Struct Geol 20(12):1783–1793

    Google Scholar 

  • Ketcham RA (2005) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27:1217–1228

    Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400

    Google Scholar 

  • Koch FG, Johnson AM, Pollard DD (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophys 74(3–4):T21–T31

    Google Scholar 

  • Kratinová Z, Závada P, Hrouda F, Schulmann K (2006) Non-scaled analogue modelling of AMS development during viscous flow: a simulation on diapir-like structures. Tectonophys 418(1–2):51–61

    Google Scholar 

  • Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325–326:85–92

    Google Scholar 

  • Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Chiaradia M (2013) A detailed geochemical study of a shallow arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia). J Petrol 54(2):273–303

    Google Scholar 

  • Liss D, Hutton DHW, Owens WH (2002) Ropy flow structures: a neglected indicator of magma-flow direction in sills and dikes. Geology 30(8):715–718

    Google Scholar 

  • Liss D, Owens WH, Hutton DHW (2004) New palaeomagnetic results from the Whin Sill complex: evidence for a multiple intrusion event and revised virtual geomagnetic poles for the late Carboniferous for the British Isles. J Geol Soc Lond 161:927–938

    Google Scholar 

  • Magee C, Stevenson C, O’Driscoll B, Schofield N, McDermott K (2012) An alternative emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes. J Struct Geol 43:73–91

    Google Scholar 

  • Martin U, Nemeth K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geoth Res 159(1–3):164–178

    Google Scholar 

  • Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (2004) Magnetic fabric: methods and applications. In: Geological Society, London, Special Publications, vol 238, p 540

    Google Scholar 

  • McCaffrey KJW, Petford N (1997) Are granitic intrusions scale invariant? J Geol Soc Lond 154:1–4

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36(6):459–462

    Google Scholar 

  • Mock A, Jerram DA (2005) Crystal Size Distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541

    Google Scholar 

  • Mock A, Jerram DA, Breitkreuz C (2003) Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths—a case study from the Halle Volcanic Complex, Germany. J Petrol 44(5):833–849

    Google Scholar 

  • Morgan S, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2005) Sheet-like emplacement of satellite laccoliths, sills, and bysmaliths of the Henry Mountains, Southern Utah. In: Field guide. Geological Society of America, pp 1–28

    Google Scholar 

  • Morgan S, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30(4):491–512

    Google Scholar 

  • O’Driscoll B, Ferré EC, Stevenson CT, Magee C (2015) The significance of magnetic fabric in layered mafic-ultramafic intrusions. In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered intrusions. Springer, pp 295–329

    Google Scholar 

  • O’Driscoll B, Hargraves RB, Emeleus CH, Troll VR, Donaldson CH, Reavy RJ (2007) Magmatic lineations inferred from anisotropy of magnetic susceptibility fabrics in Units 8, 9, and 10 of the Rum Eastern Layered Series, NW Scotland. Lithos 98(1–4):27–44

    Google Scholar 

  • Orlický O (1990) Detection of magnetic carriers in rocks: results of susceptibility changes in powdered rock samples induced by temperature. Phys Earth Planet Inter 63:66–70

    Google Scholar 

  • Orth K, McPhie J (2003) Textures formed during emplacement and cooling of a Palaeoproterozoic, small-volume rhyolitic sill. J Volcanol Geoth Res 128:341–362

    Google Scholar 

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11(3):349–363

    Google Scholar 

  • Paterson SR, Fowler TKJ, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82

    Google Scholar 

  • Paterson SR, Pignotta GS, Vernon RH (2004) The significance of microgranitoid enclave shapes and orientations. J Struct Geol 26(8):1465–1481

    Google Scholar 

  • Pavlis TL (1996) Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust. Tectonophysics 253(1):1–31

    Google Scholar 

  • Philpotts AR, Asher PM (1994) Magmatic flow-direction indicators in a giant diabase feeder dike, Connecticut. Geology 22(4):363–366

    Google Scholar 

  • Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geoth Res 161(1–2):81–94

    Google Scholar 

  • Pirsson LV (1899) On the phenocrysts of intrusive igneous rocks. Am J Sci 40:271–280

    Google Scholar 

  • Platten IM (1984) Fluidized mixtures of magma and rock in a late Caledonian breccia dyke and associated breccia pipes in Appin, Scotland. Geol J 19:209–226

    Google Scholar 

  • Platten IM (1995) The significance of phenocryst distributions in chilled margins of dykes and sills for the interpretation of tip processes. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 141–150

    Google Scholar 

  • Pollard DD (1973) Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophys 19:233–269

    Google Scholar 

  • Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II: Bending and failure of overburden layers and sill formation. Tectonophys 18(3–4):311–354

    Google Scholar 

  • Pollard DD, Muller OH, Dockstader DR (1975) The form and growth of fingered sheet intrusions. Geol Soc Am Bull 86(3):351–363

    Google Scholar 

  • Prior DJ, Mariani E, Wheeler J (2009) EBSD in the earth sciences: applications, common practice, and challenges. In: Schwartz AJ, Kumar M, Adams BL, Field DP (eds) Electron backscatter diffraction in materials science. Springer, pp 345–360

    Google Scholar 

  • Randall BAO, Farmer N (1970) The Holy Island dyke. Nat Hist Soc Northumberland Trans 16:9–91

    Google Scholar 

  • Reedman AJ, Park KH, Merriman RJ, Kim SE (1987) Welded tuff infilling a volcanic vent at Weolseong, Republic of Korea. Bull Volcanol 49(3):541–546

    Google Scholar 

  • Richter C, van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low-temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123

    Google Scholar 

  • Rickwood PC (1990) The anatomy of a dyke and the determination of propagation and magma flow directions. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanisms. Balkema, Rotterdam

    Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage laccolith growth at Elba Island (Italy). Geology 30(11):983–986

    Google Scholar 

  • Rocchi S, Mazzotti A, Marroni M, Pandolfi L, Costantini P, Bertozzi G, di Biase D, Federici F, Lô PG (2007) Detection of Miocene saucer-shaped sills (offshore Senegal) via integrated interpretation of seismic, magnetic and gravity data. Terra Nova 19:232–239

    Google Scholar 

  • Rocchi S, Dini A, Mazzarini F, Westerman DS (2010a) Themed Issue: LASI III–Magma pulses and sheets in tabular intrusions. Geosphere

    Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Farina F (2010b) Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 6(3):225–236

    Google Scholar 

  • Roni E (2012) Magma flow in shallow-level laccoliths and their feeder dykes (Elba island and Orciatico, Tuscany) revealed by AMS and structural data. In: Ph.D. thesis, University of Pisa, p 202

    Google Scholar 

  • Roni E, Westerman DS, Dini A, Stevenson C, Rocchi S (2014) Feeding and growth of a dyke–laccolith system (Elba Island, Italy) from AMS and mineral fabric data. J Geol Soc 171:413–424

    Google Scholar 

  • Ross ME (1986) Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geol Soc Am Bull 97(2):232–240

    Google Scholar 

  • Schmiedel T, Breitkreuz C, Görz I, Ehling BC (2015) Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany). Int J Earth Sci 104(2):323–333

    Google Scholar 

  • Schofield N, Stevenson C, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38:63–66

    Google Scholar 

  • Schofield N, Heaton L, Holford SP, Archer SG, Jackson CA-L, Jolley DW (2012a) Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J Geol Soc 169(4):421–426

    Google Scholar 

  • Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012b) Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J Geol Soc 169(2):127–141

    Google Scholar 

  • Schofield N, Alsop I, Warren J, Underhill JR, Lehné R, Beer W, Lukas V (2014) Mobilizing salt: magma-salt interactions. Geology 42(7):599–602

    Google Scholar 

  • Schwab M (1962) Über die Inkohlung der Steinkohlen im nördlichen Saaletrog bei Halle. Geologie 11:917–942

    Google Scholar 

  • Simón JL, Arlegui LE, Pocoví A (2006) Fringe cracks and plumose structures in layered rocks: stepping senses and their implications for palaeostress interpretation. J Struct Geol 28(6):1103–1113

    Google Scholar 

  • Simpson C, Schmid SM (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol Soc Am Bull 94(11):1281–1288

    Google Scholar 

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volcanol Geoth Res 114:1–17

    Google Scholar 

  • Słodczyk E, Pietranik A, Breitkreuz C, Pędziwiatr A, Bokła M, Schab K, Grodzicka M (2015) Formation of a laccolith by magma pulses: evidence from modal and chemical composition of the 500 m long borehole section through the Permo-Carboniferous Landsberg laccolith (Halle Volcanic Complex). Geochem J 49:523–537

    Google Scholar 

  • Smith RP (1987) Dyke emplacement at Spanish Peaks, Colorado. In: Halls HC, Fahrig WH (eds) Mafic dyke swarms, vol 34. Geological Association of Canada Special Paper, pp 47–54

    Google Scholar 

  • Stearns DW (1978) Faulting and forced folding in the Rocky Mountain foreland. In: Matthews V (ed) Laramide folding associated with basement block faulting in the Western United States, vol 151. Geological Society of America Memoir, pp 1–38

    Google Scholar 

  • Stevenson CTE, Bennett N (2011) The emplacement of the palaeogene mourne granite centres, Northern Ireland: New results from the Western Mourne Centre. J Geol Soc Lond 168:831–836

    Google Scholar 

  • Stevenson CTE, Owens WH, Hutton DHW (2007a) Flow lobes in granite: The determination of magma flow direction in the Trawenagh Bay Granite, northwestern Ireland, using anisotropy of magnetic susceptibility. Geol Soc Am Bull 119(11):1368–1386

    Google Scholar 

  • Stevenson CTE, Owens WH, Hutton DHW, Hood DN, Meighan IG (2007b) Laccolithic, as opposed to cauldron subsidence, emplacement of the Eastern Mourne pluton, N. Ireland: evidence from anisotropy of magnetic susceptibility. J Geol Soc 164(1):99–110

    Google Scholar 

  • Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc Lond 163:671–682

    Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, London, p 217

    Google Scholar 

  • Thomson K, Hutton DHW (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volc 66:364–375

    Google Scholar 

  • Thomson K, Petford N (2008) Structure and emplacement of high-level magmatic systems. In: Geological Society, London, Special Publication, vol 302, p 227

    Google Scholar 

  • Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geol Soc London Spec Publ, pp 31–44

    Google Scholar 

  • Tobisch OT, McNulty BA, Vernon RH (1997) Microgranitoid enclave swarms in granitic plutons, central Sierra Nevada, California. Lithos 40:321–339

    Google Scholar 

  • Tweto O (1951) Form and structure of sills near Pando, Colorado. Geol Soc Am Bull 62(5):507–532

    Google Scholar 

  • Varga RJ, Gee JS, Staudigel H, Tauxe L (1998) Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos Ophiolite, Cyprus. J Geophys Res 103(B3):5241–5256

    Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Vis Geosci 5(2):1–23

    Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, p 594

    Google Scholar 

  • Vernon RH, Etheridge MA, Wall VJ (1988) Shape and microstructures of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11

    Google Scholar 

  • Walker G (1987) The dike complex of Koolau volcano, Oahu: internal structure of a Hawaiian rift zone. Volcanism in Hawaii. In: USGS Professional Paper 1350, Volcanism in Hawaii, pp 961–993

    Google Scholar 

  • Wilson PI, McCaffrey KJ, Wilson RW, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46

    Google Scholar 

  • Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent to pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems, vol 302. Geol Soc London Spec Publ, pp 197–219

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Università di Pisa, grant PRA_2016_33 to SR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westerman, D., Rocchi, S., Breitkreuz, C., Stevenson, C., Wilson, P. (2017). Structures Related to the Emplacement of Shallow-Level Intrusions. In: Breitkreuz, C., Rocchi, S. (eds) Physical Geology of Shallow Magmatic Systems. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/11157_2017_31

Download citation

Publish with us

Policies and ethics