Skip to main content

Solid-State Anaerobic Digestion for Waste Management and Biogas Production

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 169))

Abstract

Solid-state anaerobic digestion (SS-AD) is commonly used to treat feedstocks with high solid content such as municipal solid waste and lignocellulosic biomass. Compared to liquid state anaerobic digestion (LS-AD), SS-AD has multiple advantages including high organic loading, minimal digestate generated, and low energy requirement for heating. However, the main disadvantages limiting the efficiency of SS-AD are long solid retention time, incomplete mixing, and an accumulation of inhibitors. For a successful and efficient SS-AD, it is important to control operation parameters such as nutrient levels, C/N ratio, feedstock-to-inoculum ratio, pH, temperature, and mixing. Biogas production in SS-AD performance can be enhanced by feedstock pretreatment, co-digestion, and supplement of additives such as biochar. The aim of this chapter is to provide a comprehensive summary of the current development in SS-AD as an effective way for treating solid waste materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoornweg D, Bhada P (2012) What a waste. A global review of solid waste management. Urban Dev Ser Knowl Pap 281(19):44

    Google Scholar 

  2. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39(12):1003–1051

    CAS  Google Scholar 

  3. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101(22):8868–8872

    CAS  PubMed  Google Scholar 

  4. Rapport RB, Zhang J, Jenkins R, Williams BM (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Calif Integr Waste Manag Board:90

    Google Scholar 

  5. Ge X, Xu F, Li Y (2016) Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Bioresour Technol 205:239–249

    CAS  PubMed  Google Scholar 

  6. Shi J, Wang Z, Stiverson JA, Yu Z, Li Y (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581

    CAS  PubMed  Google Scholar 

  7. Langholtz MH, Stokes BJ, Eaton LM (2016) 2016 Billion-ton report advancing domestic resources for a thriving bioeconomy. Oak Ridge Natl Lab 1160(July):448–2172

    Google Scholar 

  8. Kadam K, McMillan J (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88(1):17–25

    CAS  PubMed  Google Scholar 

  9. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386

    CAS  PubMed  Google Scholar 

  10. Cui Z, Shi J, Li Y (2011) Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresour Technol 102(20):9432–9437

    CAS  PubMed  Google Scholar 

  11. Li Y, Zhang R, He Y, Liu X, Chen C, Liu G (2014) Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover. Energy Fuels 28(6):3759–3765

    CAS  Google Scholar 

  12. Food and Agriculture Organization and of the United Nations (2012) Towards the future we want: end hunger and make the transition to sustainable agricultural and food systems. FAO, pp 1–42

    Google Scholar 

  13. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392

    Google Scholar 

  14. Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52(3):245–253

    CAS  Google Scholar 

  15. Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sust Energ Rev 44:824–834

    CAS  Google Scholar 

  16. Shi J, Xu F, Wang Z, Stiverson JA, Yu Z, Li Y (2014) Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Bioresour Technol 157:188–196

    CAS  PubMed  Google Scholar 

  17. Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12(3):257–284

    CAS  Google Scholar 

  18. Yan Z, Song Z, Li D, Yuan Y, Liu X, Zheng T (2015) The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresour Technol 177:266–273

    CAS  PubMed  Google Scholar 

  19. Li A et al (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6(3):17

    Google Scholar 

  20. Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Wah Tong Y (2017) Three-stage anaerobic co-digestion of food waste and horse manure. Sci Rep 7(1):1–10

    Google Scholar 

  21. Takashima M, Speece RE, Parkin GF (1990) Mineral requirements for methane fermentation. Crit Rev Environ Control 19(5):465–479

    CAS  Google Scholar 

  22. Liu CM et al (2018) Evaluation of methane yield using acidogenic effluent of NaOH pretreated corn stover in anaerobic digestion. Renew Energy 116:224–233

    CAS  Google Scholar 

  23. Speece RE, McCarty PL (1964) Nutrient requirements and biological solids accumulation in anaerobic digestion. Pergamon Press, Oxford

    Google Scholar 

  24. Hoban DJ, van den Berg L (1979) Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. J Appl Bacteriol 47(1):153–159

    CAS  PubMed  Google Scholar 

  25. Florencio L, Jeniček P, Field JA, Lettinga G (1993) Effect of cobalt on the anaerobic degradation of methanol. J Ferment Bioeng 75(5):368–374

    CAS  Google Scholar 

  26. Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65

    Google Scholar 

  27. Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148(2):459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kiener A, Husain I, Sancar A, Walsh C (1989) Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264(23):13880–13887

    CAS  PubMed  Google Scholar 

  29. Nessim SJ, Nisenbaum R, Bargman JM, Jassal SV (1986) Tetrahydromethanopterin-dependent serine transhydroxymethylase from Methanobacterium thermoautotrophicum. Perit Dial Int 32(3):316–321

    Google Scholar 

  30. Park CM, Novak JT (2013) The effect of direct addition of iron(III) on anaerobic digestion efficiency and odor causing compounds. Water Sci Technol 68(11):2391–2396

    CAS  PubMed  Google Scholar 

  31. Kayhanian M, Rich D (1995) Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass Bioenergy 8(6):433–444

    CAS  Google Scholar 

  32. Diekert RK, Graf GB, Thauer EG (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120

    CAS  Google Scholar 

  33. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132(1):118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123(1):105–107

    PubMed  Google Scholar 

  35. Zhou Y, Li C, Achu I, Liu J (2017) The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw. Bioresour Technol 224:78–86

    CAS  PubMed  Google Scholar 

  36. Suksong W et al (2017) Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. Ind Crop Prod 95:502–511

    CAS  Google Scholar 

  37. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    CAS  PubMed  Google Scholar 

  38. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555

    CAS  Google Scholar 

  39. Di Maria F, Barratta M, Bianconi F, Placidi P, Passeri D (2017) Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: comparison of system performances and identification of microbial guilds. Waste Manag 59:172–180

    PubMed  Google Scholar 

  40. Croce S, Wei Q, D’Imporzano G, Dong R, Adani F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34(8):1289–1304

    CAS  PubMed  Google Scholar 

  41. Pohl M, Mumme J, Heeg K, Nettmann E (2012) Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol 124:321–327

    CAS  PubMed  Google Scholar 

  42. Sheets JP, Ge X, Li Y (2015) Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass. Bioresour Technol 180:296–303

    CAS  PubMed  Google Scholar 

  43. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    CAS  PubMed  Google Scholar 

  44. Li Y, Li Y, Zhang D, Li G, Lu J, Li S (2016) Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production. Bioresour Technol 217:50–55

    CAS  PubMed  Google Scholar 

  45. Panjičko M, Zupančič GD, Fanedl L, Logar RM, Tišma M, Zelić B (2017) Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J Clean Prod 166:519–529

    Google Scholar 

  46. Abbassi-Guendouz A et al (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61

    CAS  PubMed  Google Scholar 

  47. Cazier EA, Trably E, Steyer JP, Escudie R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour Technol 190:106–113

    CAS  PubMed  Google Scholar 

  48. Bayrakdar A, Sürmeli RÖ, Çalli B (2017) Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresour Technol 244(June):816–823

    CAS  PubMed  Google Scholar 

  49. Zhu J, Yang L, Li Y (2015) Comparison of premixing methods for solid-state anaerobic digestion of corn stover. Bioresour Technol 175:430–435

    CAS  PubMed  Google Scholar 

  50. Li Y et al (2018) High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette. Bioresour Technol 250:741–749

    CAS  PubMed  Google Scholar 

  51. Fagbohungbe MO, Dodd IC, Herbert BMJ, Li H, Ricketts L, Semple KT (2015) High solid anaerobic digestion: operational challenges and possibilities. Environ Technol Innov 4:268–284

    Google Scholar 

  52. André L, Pauss A, Ribeiro T (2018) Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol 247:1027–1037

    PubMed  Google Scholar 

  53. Stabnikova O, Liu XY, Wang JY (2008) Anaerobic digestion of food waste in a hybrid anaerobic solid-liquid system with leachate recirculation in an acidogenic reactor. Biochem Eng J 41(2):198–201

    CAS  Google Scholar 

  54. Zhu J, Zheng Y, Xu F, Li Y (2014) Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresour Technol 154:240–247

    CAS  PubMed  Google Scholar 

  55. Veeken AHM, Hamelers BVM (2000) Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. Water Sci Technol 41(3):255–262

    CAS  PubMed  Google Scholar 

  56. Capson-Tojo G et al (2017) Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresour Technol 233:166–175

    CAS  PubMed  Google Scholar 

  57. Xu F, Wang F, Lin L, Li Y (2016) Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings. Bioresour Technol 200:753–760

    CAS  PubMed  Google Scholar 

  58. Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes JP (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manag 30(10):1768–1771

    CAS  PubMed  Google Scholar 

  59. Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects – a review. Environ Rev 18:255–278

    CAS  Google Scholar 

  60. Nguyen DD et al (2016) Dry thermophilic semi-continuous anaerobic digestion of food waste: performance evaluation, modified Gompertz model analysis, and energy balance. Energy Convers Manag 128:203–210

    CAS  Google Scholar 

  61. Li W, Lu C, An G, Chang S (2017) Comparison of alkali-buffering effects and co-digestion on high-solid anaerobic digestion of horticultural waste. Energy Fuel 31(10):10990–10997

    CAS  Google Scholar 

  62. Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production – a review. J Environ Chem Eng 2(3):1821–1830

    Google Scholar 

  63. Wu D, Lü F, Shao L, He P (2017) Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: use of intact polar lipid analysis for microbes monitoring to enhance process evaluation. Renew Energy 103:38–48

    CAS  Google Scholar 

  64. Fox P, Pohland FG (1994) Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res 66(5):716–724

    CAS  Google Scholar 

  65. Panjičko M, Zupančič GD, Zelić B (2015) Anaerobic biodegradation of raw and pre-treated brewery spent grain utilizing solid state anaerobic digestion. Acta Chim Slov 62(4):818–827

    PubMed  Google Scholar 

  66. Tian JH, Pourcher AM, Bureau C, Peu P (2017) Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw. Bioresour Technol 223:192–201

    CAS  PubMed  Google Scholar 

  67. Cesaro A, Belgiorno V (2013) Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason Sonochem 20(3):931–936

    CAS  PubMed  Google Scholar 

  68. Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102(12):6750–6756

    CAS  PubMed  Google Scholar 

  69. Holtman KM, Bozzi DV, Franqui-Villanueva D, Offeman RD, Orts WJ (2017) Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp. Renew Energy 113:257–265

    CAS  Google Scholar 

  70. Liao X, Li H, Zhang Y, Liu C, Chen Q (2016) Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int Biodeterior Biodegrad 106:141–149

    CAS  Google Scholar 

  71. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101(19):7523–7528

    CAS  PubMed  Google Scholar 

  72. Appels L, van Assche A, Willems K, Degrève J, van Impe J, Dewil R (2011) Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour Technol 102(5):4124–4130

    CAS  PubMed  Google Scholar 

  73. Mirmohamadsadeghi S, Karimi K, Zamani A, Amiri H, Horváth IS (2014) Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. Biomed Res Int 2014:6

    Google Scholar 

  74. Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energy 180:661–671

    CAS  Google Scholar 

  75. Zhao J, Zheng Y, Li Y (2014) Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour Technol 156:176–181

    CAS  PubMed  Google Scholar 

  76. Ge X, Matsumoto T, Keith L, Li Y (2015) Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion. Energy Fuels 29(1):200–204

    CAS  Google Scholar 

  77. Vasco-Correa J, Li Y (2015) Solid-state anaerobic digestion of fungal pretreated Miscanthus sinensis harvested in two different seasons. Bioresour Technol 185:211–217

    CAS  PubMed  Google Scholar 

  78. Srilatha HR, Nand K, Babu KS, Madhukara K (1995) Fungal pretreatment of orange processing waste by solid-state fermentation for improved production of methane. Process Biochem 30(4):327–331

    CAS  Google Scholar 

  79. Zhou S, Zhang Y, Dong Y (2012) Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46(1):644–648

    CAS  Google Scholar 

  80. Liang YG, Yin SS, Si YB, Zheng Z, Yuan SJ, Nie E, Luo XZ (2014) Effect of pretreatment and total solid content on thermophilic dry anaerobic digestion of Spartina alterniflora. Chem Eng J 237:209–216

    CAS  Google Scholar 

  81. Kalyani DC, Zamanzadeh M, Müller G, Horn SJ (2017) Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion. Appl Energy 193:210–219

    CAS  Google Scholar 

  82. Motte JC et al (2015) Substrate milling pretreatment as a key parameter for solid-state anaerobic digestion optimization. Bioresour Technol 173:185–192

    Google Scholar 

  83. Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154

    Google Scholar 

  84. Ahn J, Gu S, Hwang S (2009) Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem Eng J 153:145–150

    CAS  Google Scholar 

  85. Beszédes S, László Z, Horváth ZH, Szabó G, Hodúr C (2011) Bioresource technology comparison of the effects of microwave irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry. Bioresour Technol 102:814–821

    PubMed  Google Scholar 

  86. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    CAS  Google Scholar 

  87. Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    CAS  PubMed  Google Scholar 

  88. Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834

    CAS  PubMed  Google Scholar 

  89. Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzym Microb Technol 10(1):24–32

    CAS  Google Scholar 

  90. Braguglia CM, Gianico A, Mininni G (2012) Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J Environ Manag 95:S139–S143

    CAS  Google Scholar 

  91. Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102(16):7507–7512

    CAS  PubMed  Google Scholar 

  92. Charles W, Walker L, Cord-Ruwisch R (2009) Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour Technol 100(8):2329–2335

    CAS  PubMed  Google Scholar 

  93. Kangle KM, Kore SV, Kore VS, Kulkarni GS (2012) Recent trends in anaerobic codigestion: a review. Univers J Environ Res Technol 2(4):210–219

    CAS  Google Scholar 

  94. Pezzolla D, Di Maria F, Zadra C, Massaccesi L, Sordi A, Gigliotti G (2017) Optimization of solid-state anaerobic digestion through the percolate recirculation. Biomass Bioenergy 96:112–118

    CAS  Google Scholar 

  95. Khairuddin N, Manaf LA, Hassan MA, Halimoon N, Wan Ab WA, Ghani K (2016) High solid anaerobic co-digestion of household organic waste with cow manure for mass and energy recovery. Pol J Environ Stud 25(4):1549–1554

    CAS  Google Scholar 

  96. Riya S, Suzuki K, Terada A, Hosomi M, Zhou S (2016) Influence of C/N ratio on performance and microbial community structure of dry-thermophilic anaerobic co-digestion of swine manure and rice straw. J Med Bioeng 5(1):11–14

    CAS  Google Scholar 

  97. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280

    CAS  PubMed  Google Scholar 

  98. Wang LH, Wang Q, Cai W, Sun X (2012) Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller’s grains and food waste. Biosyst Eng 112(2):130–137

    Google Scholar 

  99. Lin Y, Ge X, Li Y (2014) Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production. Bioresour Technol 169:468–474

    CAS  PubMed  Google Scholar 

  100. Xu F, Li Y (2012) Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour Technol 118:219–226

    CAS  PubMed  Google Scholar 

  101. Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5(1):14–21

    CAS  Google Scholar 

  102. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energ Rev 58:1486–1499

    Google Scholar 

  103. Liang Y, Qiu L, Guo X, Pan J, Lu W, Ge Y (2017) Start-up performance of chicken manure anaerobic digesters amended with biochar and operated at different temperatures. Nat Environ Pollut Technol 16:615–621

    CAS  Google Scholar 

  104. Shen Y, Linville JL, Ignacio-de Leon PAA, Schoene RP, Urgun-Demirtas M (2016) Towards a sustainable paradigm of waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar. J Clean Prod 135:1054–1064

    CAS  Google Scholar 

  105. Qin Y, Wang H, Li X, Cheng JJ, Wu W (2017) Improving methane yield from organic fraction of municipal solid waste (OMSW) with magnetic rice-straw biochar. Bioresour Technol 245:1058–1066

    CAS  PubMed  Google Scholar 

  106. Dang Y et al (2016) Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour Technol 220:516–522

    CAS  PubMed  Google Scholar 

  107. Zhao Z, Zhang Y, Woodard TL, Nevin KP, Lovley DR (2015) Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol 191:140–145

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, H., Wen, Z. (2019). Solid-State Anaerobic Digestion for Waste Management and Biogas Production. In: Steudler, S., Werner, A., Cheng, J. (eds) Solid State Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 169. Springer, Cham. https://doi.org/10.1007/10_2019_86

Download citation

Publish with us

Policies and ethics