Skip to main content

Glyco-Engineering of Plant-Based Expression Systems

  • Chapter
  • First Online:
Advances in Glycobiotechnology

Abstract

Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions.

Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  3. Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780:546–563

    Article  CAS  PubMed  Google Scholar 

  4. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  5. Shaaltiel Y, Tekoah Y (2016) Plant specific N-glycans do not have proven adverse effects in humans. Nat Biotechnol 34:706–708

    Article  CAS  PubMed  Google Scholar 

  6. Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19:5503–5512

    Article  CAS  PubMed  Google Scholar 

  7. Mor TS (2015) Molecular pharming’s foot in the FDA’s door: Protalix’s trailblazing story. Biotechnol Lett 37:2147–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu C, Ng DT (2015) Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 16:742–752

    Article  CAS  PubMed  Google Scholar 

  9. Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E (2013) Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol 83:105–117

    Article  CAS  PubMed  Google Scholar 

  10. Abranches R, Marcel S, Arcalis E, Altmann F, Fevereiro P, Stoger E (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol 120:121–134

    Article  CAS  PubMed  Google Scholar 

  11. Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141:578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P, Stoger E (2004) Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol 136:3457–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arcalis E, Stadlmann J, Marcel S, Drakakaki G, Winter V, Rodriguez J, Fischer R, Altmann F, Stoger E (2010) The changing fate of a secretory glycoprotein in developing maize endosperm. Plant Physiol 153:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Kunert R, Cao J, Robinson DG, Depicker A, Steinkellner H (2011) Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. Plant Biotechnol J 9:179–192

    Article  CAS  PubMed  Google Scholar 

  15. Schahs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5:657–663

    Article  PubMed  CAS  Google Scholar 

  16. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stöger E, Capell T, Christou P (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A 105:3727–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7:899–913

    Article  CAS  PubMed  Google Scholar 

  18. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201

    Article  CAS  PubMed  Google Scholar 

  19. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  20. Kaushal GP, Pastuszak I, Hatanaka K, Elbein AD (1990) Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem 265:16271–16279

    Article  CAS  PubMed  Google Scholar 

  21. Szumilo T, Kaushal GP, Elbein AD (1986) Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys 247:261–271

    Article  CAS  PubMed  Google Scholar 

  22. Schoberer J, Strasser R (2017) Plant glyco-biotechnology. Semin Cell Dev Biol 80:133–141

    Google Scholar 

  23. Fitchette-Lainé AC, Gomord V, Chekkafi A, Faye L (1994) Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J 5:673–682

    Article  Google Scholar 

  24. Johnson KD, Chrispeels MJ (1987) Substrate specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledon. Plant Physiol 84:1301–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturm A, Van Kuik JA, Vliegenthart JF, Chrispeels MJ (1987) Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem 262:13392–13403

    Article  CAS  PubMed  Google Scholar 

  26. Strasser R, Steinkellner H, Borén M, Altmann F, Mach L, Glössl J, Mucha J (1999) Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from Arabidopsis thaliana. Glycoconjugate J 16:787–791

    Article  CAS  Google Scholar 

  27. Strasser R, Stadlmann J, Svoboda B, Altmann F, Glössl J, Mach L (2005) Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochem J 387:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strasser R, Schoberer J, Jin C, Glössl J, Mach L, Steinkellner H (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803

    Article  CAS  PubMed  Google Scholar 

  29. Oxley D, Munro SL, Craik DJ, Bacic A (1996) Structure of N-glycans on the S3- and S6-allele stylar self-incompatibility ribonucleases of Nicotiana alata. Glycobiology 6:611–618

    Article  CAS  PubMed  Google Scholar 

  30. Bakker H, Rouwendal GJ, Karnoup AS, Florack DE, Stoopen GM, Helsper JP, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci U S A 103:7577–7582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng Y, Bannon G, Thomas VH, Rice K, Drake R, Elbein A (1997) Purification and specificity of β-1,2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J Biol Chem 272:31340–31347

    Article  CAS  PubMed  Google Scholar 

  32. Strasser R, Altmann F, Mach L, Glössl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking β 1,2-linked xylose and core α-1,3-linked fucose. FEBS Lett 561:132–136

    Article  CAS  PubMed  Google Scholar 

  33. Vitale A, Chrispeels MJ (1984) Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. Cell Biol 99:133–140

    Article  CAS  Google Scholar 

  34. Liebminger E, Veit C, Pabst M, Batoux M, Zipfel C, Altmann F, Mach L, Strasser R (2011) Beta-N-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic N-glycans in Arabidopsis thaliana. J Biol Chem 286:10793–10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strasser R, Bondili JS, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L (2007) Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases. Plant Physiol 145:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song W, Mentink RA, Henquet MG, Cordewener JH, van Dijk AD, Bosch D, America AH, van der Krol AR (2013) N-glycan occupancy of Arabidopsis N-glycoproteins. J Proteomics 93:343–355

    Article  CAS  PubMed  Google Scholar 

  37. Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684

    Article  CAS  PubMed  Google Scholar 

  38. Gill DJ, Chia J, Senewiratne J, Bard F (2010) Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 189:843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21:149–158

    Article  CAS  PubMed  Google Scholar 

  40. Tian E, Ten Hagen KG (2009) Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconjugate J 26:325–334

    Article  CAS  Google Scholar 

  41. Kilcoyne M, Shah M, Gerlach JQ, Bhavanandan V, Nagaraj V, Smith AD, Fujiyama K, Sommer U, Costello CE, Olszewski N, Joshi L (2009) O-glycosylation of protein subpopulations in alcohol-extracted rice proteins. J Plant Physiol 166:219–232

    Article  CAS  PubMed  Google Scholar 

  42. Kishimoto T, Watanabe M, Mitsui T, Hori H (1999) Glutelin basic subunits have a mammalian mucin-type O-linked disaccharide side chain. Arch Biochem Biophys 370:271–277

    Article  CAS  PubMed  Google Scholar 

  43. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  CAS  PubMed  Google Scholar 

  44. Stulemeijer IJ, Joosten MH (2008) Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Mol Plant Pathol 9:545–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    Article  CAS  PubMed  Google Scholar 

  46. Shpak E, Leykam JF, Kieliszewski MJ (1999) Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc Natl Acad Sci U S A 96:14736–14741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shpak E, Barbar E, Leykam JF, Kieliszewski MJ (2001) Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. J Biol Chem 276:11272–11278

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Tan L, Goodrum KJ, Kieliszewski MJ (2007) High-yields and extended serum half-life of human interferon alpha2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol Bioeng 97:997–1008

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Tan L, Lamport DT, Showalter AM, Kieliszewski MJ (2008) The O-hyp glycosylation code in tobacco and Arabidopsis and a proposed role of Hyp-glycans in secretion. Phytochemistry 69:1631–1640

    Article  CAS  PubMed  Google Scholar 

  50. Twyman RM (2013) Principles of proteomics2nd edn. Garland Science, Abingdon, pp 181–190

    Book  Google Scholar 

  51. Harrison RL, Jarvis DL (2006) Protein N-glycosylation in the baculovirus–insect cell expression system and engineering of insect cells to produce mammalianized recombinant glycoproteins. Adv Virus Res 68:159–191

    Article  CAS  PubMed  Google Scholar 

  52. Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProc Int 1(4):44–52

    CAS  Google Scholar 

  53. Yoo EM, Yu LJ, Wims LA, Goldberg D, Morrison SL (2010) Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines. MAbs 2:320–334

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wilson IBH, Zeleny R, Kolarich D, Staudacher E, Stroop CJ, Kamerling JP, Altmann F (2001) Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology 11:261–274

    Article  CAS  PubMed  Google Scholar 

  55. Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 13:427–434

    Article  CAS  PubMed  Google Scholar 

  56. Léonard R, Kolarich D, Paschinger K, Altmann F, Wilson IB (2004) A genetic and structural analysis of the N-glycosylation capabilities of rice and other monocotyledons. Plant Mol Biol 55:631–644

    Article  PubMed  Google Scholar 

  57. Elbers IJ, Stoopen GM, Bakker H, Stevens LH, Bardor M, Molthoff JW, Jordi WJ, Bosch D, Lommen A (2001) Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol 126:1314–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Twyman RM, Schillberg S, Fischer R (2012) The production of vaccines and therapeutic antibodies in plants. In: Ma S, Wang A (eds) Molecular farming in plants: recent advances and future prospects. Springer, NY, pp 145–159

    Chapter  Google Scholar 

  59. Castilho A, Bohorova N, Grass J, Bohorov O, Zeitlin L, Whaley K, Altmann F, Steinkellner H (2011) Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. PLoS One 6:e26040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    Article  CAS  PubMed  Google Scholar 

  61. Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200 L orbitally shaken disposable bioreactor. Biotechnol Bioeng 112:308–321

    Article  CAS  PubMed  Google Scholar 

  62. Dirnberger D, Steinkellner H, Abdennebi L, Remy JJ, van de Wiel D (2001) Secretion of biologically active glycoforms of bovine follicle stimulating hormone in plants. Eur J Biochem 268:4570–4579

    Article  CAS  PubMed  Google Scholar 

  63. Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins: glycosylation and beyond. Biotechnol Adv 30:410–418

    Article  CAS  PubMed  Google Scholar 

  64. Fiedler U, Phillips J, Artsaenko O, Conrad U (1997) Optimization of scFv antibody production in transgenic plants. Immunotechnology 3:205–216

    Article  CAS  PubMed  Google Scholar 

  65. Schouten A, Roosien J, van Engelen FA, de Jong GA, Borst-Vrenssen AW, Zilverentant JF, Bosch D, Stiekema WJ, Gommers FJ, Schots A, Bakker J (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30:781–793

    Article  CAS  PubMed  Google Scholar 

  66. Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A 100:8013–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–1901

    Article  CAS  PubMed  Google Scholar 

  68. He X, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Gloster TM, Vocadlo DJ, Clarke LA, Qian Y, Kermode AR (2012) Production of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease. Nat Commun 3:1062

    Article  PubMed  CAS  Google Scholar 

  69. Arcalis E, Ibl V, Peters J, Melnik S, Stoger E (2014) The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci 5:439

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502

    Article  CAS  PubMed  Google Scholar 

  71. Ibl V, Stoger E (2012) The formation, function and fate of protein storage compartments in seeds. Protoplasma 249:379–392

    Article  CAS  PubMed  Google Scholar 

  72. Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  74. Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6:1911–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD (2010) Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 285:35633–35644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pompa A, Vitale A (2006) Retention of a bean phaseolin/maize gamma-zein fusion in the endoplasmic reticulum depends on disulfide bond formation. Plant Cell 18:2608–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bagga S, Adams H, Kemp JD, Sengupta-Gopalan C (1995) Accumulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiol 107:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coleman CE, Herman EM, Takasaki K, Larkins BA (1996) The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8:2335–2345

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. He X, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Kermode AR (2012) Influence of an ER-retention signal on the N-glycosylation of recombinant human alpha-L-iduronidase generated in seeds of Arabidopsis. Plant Mol Biol 79:157–169

    Article  CAS  PubMed  Google Scholar 

  81. Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H (2011) Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of Arabidopsis. Plant Physiol 155:2036–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vamvaka E, Twyman RM, Murad AM, Melnik S, Teh AYH, Arcalis E, Altmann F, Stoger E, Rech E, Ma JKC, Christou P, Capell T (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14:97–108

    Article  CAS  PubMed  Google Scholar 

  83. Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  CAS  PubMed  Google Scholar 

  84. Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Perrin Y, Ma JK, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3:115–127

    Article  CAS  PubMed  Google Scholar 

  85. Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B, Fogher C (2005) Recombinant human acid β-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. Plant Mol Biol 57:101–113

    Article  CAS  PubMed  Google Scholar 

  86. Wright KE, Prior F, Sardana R, Altosaar I, Dudani AK, Ganz PR, Tackaberry ES (2001) Sorting of glycoprotein B from human cytomegalovirus to protein storage vesicles in seeds of transgenic tobacco. Transgenic Res 10:177–181

    Article  CAS  PubMed  Google Scholar 

  87. Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Neuhaus JM, Sticher L, Meins Jr F, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A 88:10362–10366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L (1991) Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J 1:95–106

    Article  CAS  PubMed  Google Scholar 

  90. Grabowski GA, Golembo M, Shaaltiel Y (2014) Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112:1–8

    Article  CAS  PubMed  Google Scholar 

  91. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  PubMed  Google Scholar 

  92. Delporte A, De Zaeytijd J, De Storme N, Azmi A, Geelen D, Smagghe G, Guisez Y, Van Damme EJ (2014) Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. Plant Physiol Biochem 83:151–158

    Article  CAS  PubMed  Google Scholar 

  93. Remaley AT, Ugorski M, Wu N, Litzky L, Burger SR, Moore JS, Fukuda M, Spitalnik SL (1991) Expression of human glycophorin A in wild type and glycosylation-deficient Chinese hamster ovary cells. Role of N- and O-linked glycosylation in cell surface expression. J Biol Chem 266:24176–24183

    Article  CAS  PubMed  Google Scholar 

  94. Kodama S, Tsujimoto M, Tsuruoka N, Sugo T, Endo T, Kobata A (1993) Role of sugar chains in the in vitro activity of recombinant human interleukin 5. Eur J Biochem 211:903–908

    Article  CAS  PubMed  Google Scholar 

  95. Karnoup AS, Turkelson V, Anderson WH (2005) O-linked glycosylation in maize-expressed human IgA1. Glycobiology 15:965–981

    Article  CAS  PubMed  Google Scholar 

  96. Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J (2000) Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol 37:1047–1056

    Article  CAS  PubMed  Google Scholar 

  97. Pedersen CT, Loke I, Lorentzen A, Wolf S, Kamble M, Kristensen SK, Munch D, Radutoiu S, Spillner E, Roepstorff P, Thaysen-Andersen M, Stougaard J, Dam S (2017) N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research. Plant J 91:394–407

    Article  CAS  PubMed  Google Scholar 

  98. Strasser R, Altmann F, Steinkellner H (2014) Controlled glycosylation of plant-produced recombinant proteins. Curr Opin Biotechnol 30:95–100

    Article  CAS  PubMed  Google Scholar 

  99. Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565

    Article  CAS  PubMed  Google Scholar 

  100. van Ree R (2002) Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int Arch Allerg Immunol 129:189–197

    Article  CAS  Google Scholar 

  101. Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pastores GM, Shankar SP, Petakov M, Giraldo P, Rosenbaum H, Amato DJ, Szer J, Chertkoff R, Brill-Almon E, Zimran A (2016) Enzyme replacement therapy with taliglucerase alfa: 36-month safety and efficacy results in adult patients with Gaucher disease previously treated with imiglucerase. Am J Hematol 91:661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rup B, Alon S, Amit-Cohen BC, Brill Almon E, Chertkoff R, Tekoah Y, Rudd PM (2017) Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-the taliglucerase alfa story. PLoS One 12:e0186211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zimran A, Durán G, Giraldo P, Rosenbaum H, Giona F, Petakov M, Terreros Muñoz E, Solorio-Meza SE, Cooper PA, Varughese S, Alon S, Chertkoff R (2016) Long-term efficacy and safety results of taliglucerase alfa through 5 years in adult treatment-naïve patients with Gaucher disease. Blood Cells Mol Dis, published online ahead of print. https://doi.org/10.1016/j.bcmd.2016.07.002

  106. Zimran A, Durán G, Mehta A, Giraldo P, Rosenbaum H, Giona F, Amato DJ, Petakov M, Muñoz ET, Solorio-Meza SE, Cooper PA, Varughese S, Chertkoff R, Brill-Almon E (2016) Long-term efficacy and safety results of taliglucerase alfa up to 36 months in adult treatment-naïve patients with Gaucher disease. Am J Hematol 91:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601–606

    Article  CAS  PubMed  Google Scholar 

  108. Ma JKC, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd CJ, Isitt V, Katinger D, Lobedan M, Mertens H, Paul MJ, Rademacher T, Sack M, Hundleby PAC, Stiegler G, Stoger E, Twyman RM, Vcelar B, Fischer R (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J 13:1106–1120

    Article  CAS  PubMed  Google Scholar 

  109. Mari A, Ooievaar-de Heer P, Scala E, Giani M, Pirrotta L, Zuidmeer L, Bethell D, van Ree R (2008) Evaluation by double-blind placebo-controlled oral challenge of the clinical relevance of IgE antibodies against plant glycans. Allergy 63:891–896

    Article  CAS  PubMed  Google Scholar 

  110. Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16:1361–1364

    Article  CAS  PubMed  Google Scholar 

  111. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  CAS  PubMed  Google Scholar 

  112. Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  CAS  PubMed  Google Scholar 

  113. Sourrouille C, Marquet-Blouin E, D’Aoust MA, Kiefer-Meyer MC, Seveno M, Pagny-Salehabadi S, Bardor M, Durambur G, Lerouge P, Vezina L, Gomord V (2008) Downregulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721

    Article  CAS  PubMed  Google Scholar 

  114. Shin YJ, Chong YJ, Yang MS, Kwon TH (2011) Production of recombinant human granulocyte macrophage-colony stimulating factor in rice cell suspension culture with a human-like N-glycan structure. Plant Biotechnol J 9:1109–1119

    Article  CAS  PubMed  Google Scholar 

  115. Li J, Stoddard TJ, Demorest ZL, Lavoie PO, Luo S, Clasen BM, Cedrone F, Ray EE, Coffman AP, Daulhac A, Yabandith A, Retterath AJ, Mathis L, Voytas DF, D’Aoust MA, Zhang F (2016) Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J 14:533–542

    Article  CAS  PubMed  Google Scholar 

  116. Limkul J, Iizuka S, Sato Y, Misaki R, Ohashi T, Ohashi T, Fujiyama K (2016) The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants. Plant Biotechnol J 14:1682–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Forthal DN, Gach JS, Landucci G, Jez J, Strasser R, Kunert R, Steinkellner H (2010) Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 185:6876–6882

    Article  CAS  PubMed  Google Scholar 

  118. Schuster M, Jost W, Mudde GC, Wiederkum S, Schwager C, Janzek E, Altmann F, Stadlmann J, Stemmer C, Gorr G (2007) In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol J 2:700–708

    Article  CAS  PubMed  Google Scholar 

  119. Parsons J, Altmann F, Arrenberg CK, Koprivova A, Beike AK, Stemmer C, Gorr G, Reski R, Decker EL (2012) Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol J 10:851–861

    Article  CAS  PubMed  Google Scholar 

  120. Shin YJ, Castilho A, Dicker M, Sádio F, Vavra U, Grünwald-Gruber C, Kwon TH, Altmann F, Steinkellner H, Strasser R (2017) Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana. Plant Biotechnol J 15:197–206

    Article  CAS  PubMed  Google Scholar 

  121. Jansing J, Sack M, Augustine S, Fischer R, Bortesi L (2018) CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol J (in press)

    Google Scholar 

  122. Piron R, Santens F, De Paepe A, Depicker A, Callewaert N (2015) Using GlycoDelete to produce proteins lacking plant-specific N-glycan modification in seeds. Nat Biotechnol 33:1135–1137

    Article  CAS  PubMed  Google Scholar 

  123. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234

    Article  CAS  PubMed  Google Scholar 

  124. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  PubMed  Google Scholar 

  125. Takeuchi M, Inoue N, Strickland TW, Kubota M, Wada M, Shimizu R, Hoshi S, Kozutsumi H, Takasaki S, Kobata A (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 86:7819–7822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloy P, Cremata JA (2003) Relationships between the N-glycan structures and biological activities of resins produced using different culture conditions and purification procedures. J Haematol 12:511–526

    Article  Google Scholar 

  127. Castilho A, Gattinger P, Grass J, Jez J, Pabst M, Altmann F, Gorfer M, Strasser R, Steinkellner H (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frey AD, Karg SR, Kallio PT (2009) Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Plant Biotechnol J 7:33–48

    Article  CAS  PubMed  Google Scholar 

  129. Karg SR, Frey AD, Kallio PT (2010) Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J Biotechnol 146:54–65

    Article  CAS  PubMed  Google Scholar 

  130. Rouwendal GJ, Wuhrer M, Florack DE, Koeleman CA, Deelder AM, Bakker H, Stoopen GM, van Die I, Helsper JP, Hokke CH, Bosch D (2007) Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology 17:334–344

    Article  CAS  PubMed  Google Scholar 

  131. Nagels B, Van Damme EJ, Pabst M, Callewaert N, Weterings K (2011) Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiol 155:1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Castilho A, Neumann L, Gattinger P, Strasser R, Vorauer-Uhl K, Sterovsky T, Altmann F, Steinkellner H (2013) Generation of biologically active multi-sialylated recombinant human EPO-Fc in plants. PLOS One 8:e54836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A 98:2899–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fujiyama K, Furukawa A, Katsura A, Misaki R, Omasa T, Seki T (2007) Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human beta(1,4)-galactosyltransferase. Biochem Biophys Res Commun 358:85–91

    Article  CAS  PubMed  Google Scholar 

  135. Misaki R, Kimura Y, Palacpac NQ, Yoshida S, Fujiyama K, Seki T (2003) Plant cultured cells expressing human β1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13:199–205

    Article  CAS  PubMed  Google Scholar 

  136. Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci U S A 96:4692–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Seveno M, Bardor M, Paccalet T, Gomord V, Lerouge P, Faye L (2004) Glycoprotein sialylation in plants? Nat Biotechnol 22:1351–1352 Author reply 1352–1353

    Article  CAS  PubMed  Google Scholar 

  139. Zeleny R, Kolarich D, Strasser R, Altmann F (2006) Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta 224:222–227

    Article  CAS  PubMed  Google Scholar 

  140. Bakker H, Routier F, Ashikov A, Neumann D, Bosch D, Gerardy-Schahn R (2008) A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydr Res 343:2148–2152

    Article  CAS  PubMed  Google Scholar 

  141. Shah MM, Fujiyama K, Flynn CR, Joshi L (2003) Sialylated endogenous glycoconjugates in plant cells. Nat Biotechnol 21:1470–1471

    Article  CAS  PubMed  Google Scholar 

  142. Castilho A, Pabst M, Leonard R, Veit C, Altmann F, Mach L, Glössl J, Strasser R, Steinkellner H (2008) Construction of a functional CMP-sialic acid biosynthesis pathway in Arabidopsis. Plant Physiol 147:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Misaki R, Fujiyama K, Seki T (2006) Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochem Biophys Res Commun 339:1184–1189

    Article  CAS  PubMed  Google Scholar 

  144. Wee EG, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kallolimath S, Castilho A, Strasser R, Grünwald-Gruber C, Altmann F, Strubl S, Galuska CE, Zlatina K, Galuska SP, Werner S, Thiesler H, Werneburg S, Hildebrandt H, Gerardy-Schahn R, Steinkellner H (2016) Engineering of complex protein sialylation in plants. Proc Natl Acad Sci U S A 113:9498–9503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang J, Zhang Y, Wei J, Zhang X, Zhang B, Zhu Z, Zou W, Wang Y, Mou Z, Ni B, Wu Y (2007) Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response. Immunology 121:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rouwendal GJ, Florack DE, Hesselink T, Cordewener JH, Helsper JP, Bosch D (2009) Synthesis of Lewis X epitopes on plant N-glycans. Carbohydr Res 344:1487–1493

    Article  CAS  PubMed  Google Scholar 

  149. Werle M, Bernkop-Schnurch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–367

    Article  CAS  PubMed  Google Scholar 

  150. Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299

    Article  CAS  PubMed  Google Scholar 

  151. Xu J, Okada S, Tan L, Goodrum KJ, Kopchick JJ, Kieliszewski MJ (2010) Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Res 19:849–867

    Article  CAS  PubMed  Google Scholar 

  152. Daskalova SM, Radder JE, Cichacz ZA, Olsen SH, Tsaprailis G, Mason H, Lopez LC (2010) Engineering of N. benthamiana plants for production of N-acetylgalactosamine-glycosylated proteins—towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnol 10:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Strasser R (2012) Challenges in O-glycan engineering of plants. Front Plant Sci 3:218

    Article  PubMed  PubMed Central  Google Scholar 

  154. Strasser R (2013) Engineering of human-type O-glycosylation in Nicotiana benthamiana plants. Bioengineered 4:191–196

    Article  PubMed  Google Scholar 

  155. Dicker M, Tschofen M, Maresch D, König J, Juarez P, Orzaez D, Altmann F, Steinkellner H, Strasser R (2016) Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants. Front Plant Sci 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  156. Dicker M, Maresch D, Strasser R (2016) Glyco-engineering for the production of recombinant IgA1 with distinct mucin-type O-glycans in plants. Bioengineered 22:1–6

    Google Scholar 

  157. Buyel JF, Fischer R (2014) Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants. Biotechnol J 9:566–577

    Article  CAS  PubMed  Google Scholar 

  158. CMC Biotech Working Group (2009) A-Mab: a case study in bioprocess development. CASSS, Emeryville, pp 1–278

    Google Scholar 

  159. Buyel JF, Twyman RM, Fischer R (2015) Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 33:902–913

    Article  CAS  PubMed  Google Scholar 

  160. Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30:419–433

    Article  CAS  PubMed  Google Scholar 

  161. Antonyuk V, Grama S, Plichta Z, Magorivska I, Horak D, Stoika R (2015) Use of specific polysaccharide-immobilized monodisperse poly(glycidyl methacrylate) core-silica shell microspheres for affinity purification of lectins. Biomed Chromatogr 29:783–787

    Article  CAS  PubMed  Google Scholar 

  162. Zhu BCR, Laine RA (1989) Purification of acetyllactosamine-specific tomato lectin by erythroglycan-Sepharose affinity chromatography. Prep Biochem 19:341–350

    CAS  PubMed  Google Scholar 

  163. Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC (2013) The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J 7:641–657

    Article  CAS  Google Scholar 

  164. Muthing J, Meisen I, Bulau P, Langer M, Witthohn K, Lentzen H, Neumann U, Peter-Katalinic J (2004) Mistletoe lectin I is a sialic acid-specific lectin with strict preference to gangliosides and glycoproteins with terminal Neu5Ac alpha 2-6Gal beta 1-4GlcNAc residues. Biochemistry 11:2996–3007

    Article  CAS  Google Scholar 

  165. Endo T (1996) Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns. J Chromatogr A 720:251–261

    Article  CAS  PubMed  Google Scholar 

  166. Fanayan S, Hincapie M, Hancock WS (2012) Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis 33:1746–1754

    Article  CAS  PubMed  Google Scholar 

  167. Hortin GL (1990) Isolation of glycopeptides containing O-linked oligosaccharides by lectin affinity-chromatography on jacalin agarose. Anal Biochem 191:262–267

    Article  CAS  PubMed  Google Scholar 

  168. Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 2:434–439

    Article  CAS  Google Scholar 

  169. Kourmanova AG, Soudarkina OJ, Olsnes S, Kozlov JV (2004) Cloning and characterization of the genes encoding toxic lectins in mistletoe (Viscum album L). Eur J Biochem 12:2350–2360

    Article  CAS  Google Scholar 

  170. Niwa H, Tonevitsky AG, Agapov II, Saward S, Pfuller U, Palmer RA (2003) Crystal structure at 3 Å of mistletoe lectin I, a dimeric type-II ribosome-inactivating protein, complexed with galactose. Eur J Biochem 13:2739–2749

    Article  CAS  Google Scholar 

  171. Boes A, Spiegel H, Delbruck H, Fischer R, Schillberg S, Sack M (2011) Affinity purification of a framework 1 engineered mouse/human chimeric IgA2 antibody from tobacco. Biotechnol Bioeng 12:2804–2814

    Article  CAS  Google Scholar 

  172. Li YC, Pfuller U, Larsson EL, Jungvid H, Galaev IY, Mattiasson B (2001) Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography. J Chromatogr A 925:115–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, R. et al. (2018). Glyco-Engineering of Plant-Based Expression Systems. In: Rapp, E., Reichl, U. (eds) Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, vol 175. Springer, Cham. https://doi.org/10.1007/10_2018_76

Download citation

Publish with us

Policies and ethics