Skip to main content

Green Chemistry and Its Contribution to Industrial Biotechnology

  • Chapter
  • First Online:
Sustainability and Life Cycle Assessment in Industrial Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 173))

Abstract

Sustainable chemistry is a broad framework that starts with the function that a chemical product is offering. Not only chemical but also economic and ethical aspects come into focus throughout the complete lifecycle of chemical products. Green chemistry is an important building block for sustainable chemistry and addresses the issue of greener synthesis and, to a certain degree, the more benign properties of chemicals. The principles of green chemistry clearly aim at making chemical reactions and processes more environmentally friendly. Aspects such as atom efficiency, energy efficiency, harmless reactants, renewable resources, and pollution prevention are considered. Despite the progress made toward a “greener” chemistry, biotechnological processes, as processes for the conversion of biomass into value-added products, have not been properly adapted to new developments. Processes used in industrial biotechnology are predominantly linear. This review elaborates on the potential contributions of green chemistry to industrial biotechnology and vice versa. Examples are presented of how green chemistry and biotechnology can be connected to make substrate supply, upstream and downstream processing, and product formation more sustainable. The chapter ends with a case study of adipic acid production from lignin to illustrate the importance of a strong connection between green chemistry and biotechnology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matlin SA, Mehta G, Hopf H, Krief A (2015) The role of chemistry in inventing a sustainable future. Nat Chem 7:941. https://doi.org/10.1038/nchem.2389

    Article  CAS  PubMed  Google Scholar 

  2. Kümmerer K, Clark J (2016) Green and sustainable chemistry. In: Heinrichs H, Martens P, Michelsen G, Wiek A (eds) Sustainability science: an introduction. Springer Netherlands, Dordrecht, pp 43–59. https://doi.org/10.1007/978-94-017-7242-6_4

    Chapter  Google Scholar 

  3. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  4. Kümmerer K (2017) Sustainable chemistry: a future guiding principle. Angew Chem Int Ed 56:16420–16421. https://doi.org/10.1002/ange.201709949

    Article  Google Scholar 

  5. Festel G (2018) Economic aspects of industrial biotechnology. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_70

  6. MacLean H, Saville B (2018) Environmental aspects of industrial biotechnology. Adv Biochem Eng Biotechnol

    Google Scholar 

  7. Koutinas AA et al (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627. https://doi.org/10.1039/C3CS60293A

    Article  CAS  PubMed  Google Scholar 

  8. Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J (2016) Valorization of organic residues for the production of added value chemicals: a contribution to the bio-based economy. Biochem Eng J 116:3–16. https://doi.org/10.1016/j.bej.2015.12.016

    Article  CAS  Google Scholar 

  9. Moncada JB, Aristizábal VM, Cardona CA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134. https://doi.org/10.1016/j.bej.2016.06.009

    Article  CAS  Google Scholar 

  10. Benoît Norris C (2018) Social life cycle assessment for industrial biotechnology. Adv Biochem Eng Biotechnol

    Google Scholar 

  11. Geldermann J et al (2016) Improved resource efficiency and cascading utilisation of renewable materials. J Clean Prod 110:1–8. https://doi.org/10.1016/j.jclepro.2015.09.092

    Article  Google Scholar 

  12. Ahmadi N, Khosravi-Darani K, Mortazavian AM (2017) An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electron J Biotechnol 28:67–75. https://doi.org/10.1016/j.ejbt.2017.04.004

    Article  CAS  Google Scholar 

  13. Özdenkçi K et al (2017) A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers Manag 149:974–987. https://doi.org/10.1016/j.enconman.2017.04.034

    Article  CAS  Google Scholar 

  14. de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. https://doi.org/10.1016/B978-0-444-63453-5.00001-X

  15. Baum R, Wajszczuk K, Pepliński B, Wawrzynowicz J (2013) Potential for agricultural biomass production for energy purposes in Poland: a review. Contemp Econ 7:63–74

    Article  Google Scholar 

  16. Liverpool-Tasie LSO, Omonona BT, Sanou A, Ogunleye WO (2017) Is increasing inorganic fertilizer use for maize production in SSA a profitable proposition? Evidence from Nigeria. Food Pol 67:41–51. https://doi.org/10.1016/j.foodpol.2016.09.011

    Article  Google Scholar 

  17. Gorazda K et al (2017) Fertilisers production from ashes after sewage sludge combustion – a strategy towards sustainable development. Environ Res 154:171–180. https://doi.org/10.1016/j.envres.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Zhang F, Wang Q, Hong J, Chen W, Qi C, Ye L (2017) Life cycle assessment of diammonium- and monoammonium-phosphate fertilizer production in China. J Clean Prod 141:1087–1094. https://doi.org/10.1016/j.jclepro.2016.09.107

    Article  CAS  Google Scholar 

  19. Demichelis F, Pleissner D, Fiore S, Mariano S, Navarro Gutiérrez IM, Schneider R, Venus J (2017) Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour Technol 241:508–516. https://doi.org/10.1016/j.biortech.2017.05.174

    Article  CAS  PubMed  Google Scholar 

  20. Pleissner D, Demichelis F, Mariano S, Fiore S, Navarro Gutiérrez IM, Schneider R, Venus J (2017) Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J Clean Prod 143:615–623. https://doi.org/10.1016/j.jclepro.2016.12.065

    Article  CAS  Google Scholar 

  21. Alexandri M, Papapostolou H, Vlysidis A, Gardeli C, Komaitis M, Papanikolaou S, Koutinas AA (2016) Extraction of phenolic compounds and succinic acid production from spent sulphite liquor. J Chem Technol Biotechnol 91:2751–2760. https://doi.org/10.1002/jctb.4880

    Article  CAS  Google Scholar 

  22. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628. https://doi.org/10.1007/s00253-002-1058-9

    Article  CAS  PubMed  Google Scholar 

  23. Ji W, Shen Z, Wen Y (2015) Hydrolysis of wheat straw by dilute sulfuric acid in a continuous mode. Chem Eng J 260:20–27. https://doi.org/10.1016/j.cej.2014.08.089

    Article  CAS  Google Scholar 

  24. Zhuo K, Du Q, Bai G, Wang C, Chen Y, Wang J (2015) Hydrolysis of cellulose catalyzed by novel acidic ionic liquids. Carbohydr Polym 115:49–53. https://doi.org/10.1016/j.carbpol.2014.08.078

    Article  CAS  PubMed  Google Scholar 

  25. Haiß A, Jordan A, Westphal J, Logunova E, Gathergood N, Kümmerer K (2016) On the way to greener ionic liquids: identification of a fully mineralizable phenylalanine-based ionic liquid. Green Chem 18:4361–4373. https://doi.org/10.1039/C6GC00417B

    Article  Google Scholar 

  26. Fenila F, Shastri Y (2016) Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resour Effic Technol 2:S96–S104. https://doi.org/10.1016/j.reffit.2016.11.006

    Article  Google Scholar 

  27. Revin V, Atykyan N, Zakharkin D (2016) Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment. Electron J Biotechnol 20:14–19. https://doi.org/10.1016/j.ejbt.2015.11.007

    Article  CAS  Google Scholar 

  28. Jantasee S, Kienberger M, Mungma N, Siebenhofer M (2017) Potential and assessment of lactic acid production and isolation – a review. J Chem Technol Biotechnol 92(12):2885–2893. https://doi.org/10.1002/jctb.5237

    Article  CAS  Google Scholar 

  29. Pleissner D, Lau KY, Schneider R, Venus J, Lin CSK (2015) Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res Int 73:52–61. https://doi.org/10.1016/j.foodres.2014.11.048

    Article  CAS  Google Scholar 

  30. Pleissner D, Schneider R, Venus J, Koch T (2017) Separation of lactic acid and recovery of salt-ions from fermentation broth. J Chem Technol Biotechnol 92:504–511. https://doi.org/10.1002/jctb.5023

    Article  CAS  Google Scholar 

  31. Chemarin F et al (2017) New insights in reactive extraction mechanisms of organic acids: an experimental approach for 3-hydroxypropionic acid extraction with tri-n-octylamine. Sep Purif Technol 179:523–532. https://doi.org/10.1016/j.seppur.2017.02.018

    Article  CAS  Google Scholar 

  32. Roopan SM (2017) An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. Int J Biol Macromol 103:508–514. https://doi.org/10.1016/j.ijbiomac.2017.05.103

    Article  CAS  PubMed  Google Scholar 

  33. Sonoda T, Ona T, Yokoi H, Ishida Y, Ohtani H, Tsuge S (2001) Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Anal Chem 73:5429–5435. https://doi.org/10.1021/ac010557c

    Article  CAS  PubMed  Google Scholar 

  34. Dai J, Patti AF, Saito K (2016) Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 57:4945–4951. https://doi.org/10.1016/j.tetlet.2016.09.084

    Article  CAS  Google Scholar 

  35. Ma Y, Du Z, Liu J, Xia F, Xu J (2015) Selective oxidative C-C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst. Green Chem 17:4968–4973. https://doi.org/10.1039/C5GC00645G

    Article  CAS  Google Scholar 

  36. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. https://doi.org/10.1146/annurev.micro.50.1.553

    Article  CAS  PubMed  Google Scholar 

  37. Kohlstedt M et al (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293. https://doi.org/10.1016/j.ymben.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  38. van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VAP, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28:85–92. https://doi.org/10.1002/btpr.709

    Article  CAS  PubMed  Google Scholar 

  39. Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun 3:111–119. https://doi.org/10.1016/j.meteno.2016.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  40. Capelli S et al (2017) Bio-adipic acid production by catalysed hydrogenation of muconic acid in mild operating conditions. Appl Catal B Environ 218:220–229. https://doi.org/10.1016/j.apcatb.2017.06.060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pleissner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pleissner, D., Kümmerer, K. (2018). Green Chemistry and Its Contribution to Industrial Biotechnology. In: Fröhling, M., Hiete, M. (eds) Sustainability and Life Cycle Assessment in Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham. https://doi.org/10.1007/10_2018_73

Download citation

Publish with us

Policies and ethics