Skip to main content

Advances in Processing Chitin as a Promising Biomaterial from Ionic Liquids

  • Chapter
  • First Online:
Application of Ionic Liquids in Biotechnology

Abstract

Chitin isolated through microwave-assisted dissolution using ionic liquids is a high molecular weight (MW) polymer that can be manufactured into materials of different architectures (e.g., fibers, films, microspheres, nanostructured materials) to be used as wound care dressings, drug delivery devices, scaffolds, etc. However, because of differences from traditional isolation methods and, thus, differences in polymer length and degree of deacetylation, it could exhibit bio-related properties that differ from those of traditionally ‘pulped’ chitin. Here we present the initial assessments of bio-related chitin properties in order to provide a useful scientific basis for clinical applications: biocompatibility, cytotoxicity (intracutaneous reactivity), wound healing efficacy, histological evaluation of the wounds treated with chitin dressing, and antibacterial activity. We also provide the studies that outline potential applications of chitin as a raw polymer for preparation of biomaterials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eriksen M, Lebreton LCM, Carson HS et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lunt J, Shafer AL (2000) Polylactic acid polymers from corn. Applications in the textiles industry. J Ind Text 29:191–205. https://doi.org/10.1177/152808370002900304

    Article  CAS  Google Scholar 

  3. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  4. Rizvi R, Cochrane B, Naguib H et al (2011) Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. J Cell Plast 47:283–300. https://doi.org/10.1177/0021955X11402549

    Article  CAS  Google Scholar 

  5. Arulrajah A, Maghoolpilehrood F, Disfani MM et al (2014) Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. J Clean Prod 72:181–186. https://doi.org/10.1016/j.jclepro.2014.03.010

    Article  CAS  Google Scholar 

  6. Marchessault RH (1984) Carbohydrate polymers: nature’s high performance materials. In: Vandenberg EJ (ed) Contemporary topics in polymer science. Springer, Boston, pp 15–53

    Chapter  Google Scholar 

  7. Parkes A (1857) Application for British patent 1856. In: Patents for inventions. UK Patent office, 255

    Google Scholar 

  8. Hyatt JW (1869) Billiard balls. US Patent 50359, Oct 1869

    Google Scholar 

  9. Plastics Market Analysis by Product (PE, PP, PVC, PET, Polystyrene, Engineering Thermoplastics), by Application (Film & Sheet, Injection Molding, Textiles, Packaging, Transportation, Construction) and Segment Forecasts to 2020. Grand View Research, Inc. 2015

    Google Scholar 

  10. Muzzarelli RAA (1983) Chitin and its derivatives: new trends of applied research. Carbohydr Polym 3:53–75. https://doi.org/10.1016/0144-8617(83)90012-7

    Article  CAS  Google Scholar 

  11. Seoudi R, Nada AMA (2007) Molecular structure and dielectric properties studies of chitin and its treated by acid, base and hypochlorite. Carbohydr Polym 68:728–733. https://doi.org/10.1016/j.carbpol.2006.08.009

    Article  CAS  Google Scholar 

  12. Kunike G (1926) Chitin and chitosan. J Soc Dyers Colorists 42:318–342

    Google Scholar 

  13. Von Weimarn PP (1927) Conversion of fibroin, chitin, casein, and similar substances into the ropy-plastic state and colloidal solution. Ind Eng Chem 19:109–110. https://doi.org/10.1021/ie50205a034

    Article  Google Scholar 

  14. Brine CJ, Austin PR (1975) Renaturated chitin fibrils, films and filaments. In: Church TD (ed) Marine chemistry in coastal environment, ACS symposium series, vol 18. ACS Publications, Washington, pp 505–518. https://doi.org/10.1021/bk-1975-0018.ch031

    Chapter  Google Scholar 

  15. Austin PR (1975) Solvents for and purification of chitin. US Patent 3,892,731, Jul 1975

    Google Scholar 

  16. Tamura H, Hamaguchi T, Tokura S (2004) Destruction of rigid crystalline structure to prepare chitin solution. In: Boucher I, Jamieson K, Retnakaran A (eds) Advances in chitin science, proceedings of the 9th international conference on Chitin and Chitosan. European Chitin Society, Montreal, pp 84–87

    Google Scholar 

  17. Carpozza RC (1976) Spinning and shaping poly-(N-acetyl-D-glucosamine). US Patent 3,988,411, Oct 1976

    Google Scholar 

  18. Welton T (1999) Room-temperature ionic liquids. Chem Rev 99:2071–2084. https://doi.org/10.1021/cr980032t

    Article  CAS  PubMed  Google Scholar 

  19. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m

    Article  CAS  PubMed  Google Scholar 

  20. Fort DA, Remsing RC, Swatloski RP et al (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-N-butyl-3-methylimidazolium chloride. Green Chem 9:63–69. https://doi.org/10.1039/B607614A

    Article  CAS  Google Scholar 

  21. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537. https://doi.org/10.1039/C2CS15311D

    Article  CAS  PubMed  Google Scholar 

  22. Sun N, Rahman M, Qin Y et al (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. https://doi.org/10.1039/B822702K

    Article  CAS  Google Scholar 

  23. Li WY, Sun N, Stoner B et al (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047. https://doi.org/10.1039/C1GC15522A

    Article  CAS  Google Scholar 

  24. Sun N, Jiang XY, Maxim ML et al (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73. https://doi.org/10.1002/cssc.201000272

    Article  CAS  PubMed  Google Scholar 

  25. Cheng F, Wang H, Chatel G et al (2014) Facile pulping of lignocellulosic biomass using choline acetate. Bioresour Technol 164:394–401. https://doi.org/10.1016/j.biortech.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  26. Lan W, Liu C-F, Sun RC (2011) Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. J Agric Food Chem 59:8691–8701. https://doi.org/10.1021/jf201508g

    Article  CAS  PubMed  Google Scholar 

  27. Qin Y, Lu X, Sun N et al (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971. https://doi.org/10.1039/C003583A

    Article  CAS  Google Scholar 

  28. Tietze AA, Heimer P, Stark A et al (2012) Ionic liquid applications in peptide chemistry: synthesis, purification and analytical characterization processes. Molecules 17:4158–4185. https://doi.org/10.3390/molecules17044158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schröder C (2017) Proteins in ionic liquids: current status of experiments and simulations. Top Curr Chem 375:25–51. https://doi.org/10.1007/s41061-017-0110-2

    Article  CAS  Google Scholar 

  30. Cheng FC, Wang H, Rogers RD (2014) Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sustain Chem Eng 2:2859–2865. https://doi.org/10.1021/sc500614m

    Article  CAS  Google Scholar 

  31. Mantz RA, Fox DM, Green MIII et al (2007) Dissolution of biopolymers using ionic liquids. Z Naturforsch A 62:275–280. https://doi.org/10.1515/zna-2007-5-60

    Article  CAS  Google Scholar 

  32. Shamshina JL, Gurau G, Block LE et al (2014) Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mat Chem B 2:3924–3936. https://doi.org/10.1039/C4TB00329B

    Article  CAS  Google Scholar 

  33. Barber PS, Kelley SP, Griggs CS et al (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 16:1828–1836. https://doi.org/10.1039/C4GC00092G

    Article  CAS  Google Scholar 

  34. Qin Y, Rogers RD, Daly DT (2010) Process for forming films, fibers, and beads from chitinous biomass, US 9096743 B2, Jun 2010

    Google Scholar 

  35. King C, Shamshina JL, Gurau G et al (2017) A platform for more sustainable chitin films from an ionic liquid process. Green Chem 19:117–126. https://doi.org/10.1039/C6GC02201D

    Article  CAS  Google Scholar 

  36. King CA, Shamshina JL, Zavgorodnya O et al (2017) Porous chitin microbeads for more sustainable cosmetics. ACS Sustain Chem Eng 5:11660–11667. https://doi.org/10.1021/acssuschemeng.7b03053

    Article  CAS  Google Scholar 

  37. Barber PS, Griggs CS, Bonner JR et al (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15:601–607. https://doi.org/10.1039/C2GC36582K

    Article  CAS  Google Scholar 

  38. Zavgorodnya O, Shamshina JL, Bonner JR et al (2017) Electrospinning biopolymers from ionic liquids requires control of different solution properties than volatile organic solvents. ACS Sustain Chem Eng 5:5512–5519. https://doi.org/10.1021/acssuschemeng.7b00863

    Article  CAS  Google Scholar 

  39. Shamshina JL, Zavgorodnya O, Bonner JR et al (2016) “Practical” electrospinning of biopolymers in ionic liquids. ChemSusChem 10:106–111. https://doi.org/10.1002/cssc.201601372

    Article  CAS  PubMed  Google Scholar 

  40. Kimura M, Shinohara Y, Takizawa J et al (2015) Versatile molding process for tough cellulose hydrogel materials. Sci Rep 5:16266. https://doi.org/10.1038/srep16266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao X, Chen X, Zhang J et al (2016) Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng 4:3912–3920. https://doi.org/10.1021/acssuschemeng.6b00767

    Article  CAS  Google Scholar 

  42. Hirano S, Nakahira T, Nakagawa M et al (1999) The preparation and application of functional fibers from crab shell chitin. J Biotechnol 70:373–377. https://doi.org/10.10116/S0079-6352(99)80130-1

    Article  CAS  Google Scholar 

  43. Vázquez JA, Rodríguez-Amado I, Montemayor MI et al (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11:747–774. https://doi.org/10.3390/md11030747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peluso G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15:1215–1220. https://doi.org/10.1016/0142-9612(94)90272-0

    Article  CAS  PubMed  Google Scholar 

  45. Prudden JF, Migel P, Hanson P et al (1970) The discovery of a potent pure chemical wound-healing accelerator. Am J Surg 119:560–564. https://doi.org/10.1016/0002-9610(70)90175-3

    Article  CAS  PubMed  Google Scholar 

  46. Jayakumar R, Prabaharan M, Kumar PTS et al (2011) Novel chitin and chitosan materials in wound dressing. In: Laskovski AN (ed) Biomedical engineering, trends in materials science. InTech, Rijeka, pp 3–24. https://doi.org/10.5772/13509

    Chapter  Google Scholar 

  47. Mori T, Okumura M, Mastuura M et al (1997) Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947–951. https://doi.org/10.1016/S0142-9612(97)00017-3

    Article  CAS  PubMed  Google Scholar 

  48. Wan ACA, Tai BCU (2013) Chitin - a promising biomaterial for tissue engineering and stem cell technology. Biotech Adv 31:1776–1785. https://doi.org/10.1016/j.biotechadv.2013.09.007

    Article  CAS  Google Scholar 

  49. Shigemasa Y, Minami S (1996) Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 13:383–420. https://doi.org/10.1080/02648725.1996.10647935

    Article  CAS  PubMed  Google Scholar 

  50. Yang T-L (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12:1936–1963. https://doi.org/10.3390/ijms12031936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Unitika’s history creates its next history. https://www.unitika.co.jp/e/company/history.html. Accessed 14 Oct 2017

  52. Unitika Ltd. http://www.unitika.co.jp/e/. Accessed 14 Oct 2017

  53. Syvec. http://syvek.com/. Accessed 11 Oct 2017

  54. Hemostasis LLC. http://www.hemostasisllc.com/excelarrest-techinfo.html. Accessed 11 Oct 2017

  55. Nakajima M, Atsumi K, Kifune K et al (1986) Chitin is an effective material for sutures. Jpn J Surg 16:418–424. https://doi.org/10.1007/BF02470609

    Article  CAS  PubMed  Google Scholar 

  56. Chu C-C, von Fraunhofer JA, Greisler HP (eds) (1996) Wound closure biomaterials and devices. CRC Press, New York, p 416

    Google Scholar 

  57. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  58. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8:1988–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shamshina JL, Barber PS, Gurau G et al (2017) Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sust Chem Eng 4:6072–6081. https://doi.org/10.1021/acssuschemeng.6b01434

    Article  CAS  Google Scholar 

  60. King K, Stein RS, Shamshina JL (2017) Measuring the purity of chitin with a clean, quantitative solid-state NMR method. ACS Sust Chem Eng 5:8011–8016. https://doi.org/10.1021/acssuschemeng.7b01589. Unpublished results (2016)

    Article  CAS  Google Scholar 

  61. Rogers RD (2016) Unpublished results

    Google Scholar 

  62. Sall B (2000–2013) Regulation of medical devices. In: Madame Curie bioscience database: landes bioscience. Available via NIH. Available via https://www.iso.org/standard/40884.html. Accessed 15 Oct 2017. https://www.ncbi.nlm.nih.gov/books/NBK6534/. Accessed 15 Oct 2017

  63. Considerations for the biocompatibility evaluation of medical devices (2001) https://www.mddionline.com/considerations-biocompatibility-evaluation-medical-devices. Accessed 15 Oct 2017

  64. ISO 10993-10:2010 (2010) Biological evaluation of medical devices - Part 10: Tests for irritation and skin sensitization. Available via https://www.iso.org/standard/40884.html. Accessed 15 Oct 2017

  65. Silva SS, Duarte ARC, Carvalho AP et al (2011) Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomater 7:1166–1172. https://doi.org/10.1016/j.actbio.2010.09.041

    Article  CAS  PubMed  Google Scholar 

  66. ISO/10993-5 (1992) Biological evaluation of medical devices- Part 5: test for cytotoxicity, In Vitro methods: 8.2 test on extracts

    Google Scholar 

  67. Wang L, Khor E, Wee A et al (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res 63:610–618. https://doi.org/10.1002/jbm.10382

    Article  CAS  PubMed  Google Scholar 

  68. Domard AA (2011) Perspective on 30 years research on chitin and chitosan. Carbohydr Polym 87:696–703. https://doi.org/10.1016/j.carbpol.2010.04.083

    Article  CAS  Google Scholar 

  69. Li J, Du Y, Yang J et al (2005) Preparation and characterisation of low molecular weight chitosan and chito-oligomers by a commercial enzyme. Polym Degrad Stabil 87:441–448. https://doi.org/10.1016/j.polymdegradstab.2004.09.008

    Article  CAS  Google Scholar 

  70. Rogers RD (2015) Unpublished results

    Google Scholar 

  71. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268. https://doi.org/10.1038/nbt.1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paudel KS, Milewski M, Swadley CL et al (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131. https://doi.org/10.4155/tde.10.16

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Sasaki T, Irie S et al (2008) Novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49:2321–2327. https://doi.org/10.1016/j.polymer.2008.03.027

    Article  CAS  Google Scholar 

  74. Luo L, Lane ME (2015) Topical and transdermal delivery of caffeine. Int J Pharm 490:155–164. https://doi.org/10.1016/j.ijpharm.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  75. Budavari S (1996) The Merck index, an encyclopedia of chemicals, drugs, and biologicals.12th edn. Merck & Co., Inc., Whitehouse Station, p 1674

    Google Scholar 

  76. Hassan BAR (2012) Overview on drug delivery system. Pharm Anal Acta 3:e137. https://doi.org/10.4172/2153-2435.1000e137

    Article  Google Scholar 

  77. Neuse EW (2008) Synthetic polymers as drug-delivery vehicles in medicine. Met Based Drugs 2008:1–19. https://doi.org/10.1155/2008/469531

    Article  Google Scholar 

  78. Mahdavi SA, Jafari SM, Ghorbani M et al (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518

    Article  CAS  Google Scholar 

  79. Kawaguchi H (2000) Functional polymer microsphere. Prog Polym Sci 25:1171–1210. https://doi.org/10.1080/07373937.2013.839562

    Article  CAS  Google Scholar 

  80. Yusof NL, Lim LY, Khor E (2001) Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res 54:59–68. https://doi.org/10.1002/1097-4636(200101)54:1<59::AID-JBM7>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Li Y, Liu S et al (2015) Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohydr Polym 120:53–59. https://doi.org/10.1016/j.carbpol.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  82. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  83. Singh N, Chen J, Koziol KK et al (2016) Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale 8:8288–8299. https://doi.org/10.1039/c5nr06595

    Article  CAS  PubMed  Google Scholar 

  84. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352. https://doi.org/10.1080/15583720802022182

    Article  CAS  Google Scholar 

  85. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719

    Article  CAS  Google Scholar 

  86. Lee KY, Jeong L, Kang YO et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032. https://doi.org/10.1016/j.addr.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  87. Noh HK, Lee SW, Kim JM et al (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944. https://doi.org/10.1016/j.biomaterials.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  88. Xu S, Zhang J, He A et al (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911–2917. https://doi.org/10.1016/j.polymer.2008.04.046

    Article  CAS  Google Scholar 

  89. Quan S-L, Kang S-G, Chin I-J (2006) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230. https://doi.org/10.1007/s10570-009-9386-x

    Article  CAS  Google Scholar 

  90. Viswanathan G, Murugesan S, Pushparaj V et al (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418. https://doi.org/10.1021/bm050837s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Freire MG, Teles ARR, Ferreira RAS et al (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180. https://doi.org/10.1039/C1GC15930E

    Article  CAS  Google Scholar 

  92. Zheng Y, Miao J, Maeda N et al (2014) Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J Mater Chem A 2:15029–15034. https://doi.org/10.1039/C4TA03221G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the 525 Solutions, and U.S. Department of Energy (DOE) SBIR Office of Science (DE-SC0010152) for support.

Notes

RDR is an owner and president of 525 Solutions, Inc. and has a partial ownership of Mari Signum, Mid-Atlantic. JLS and OZ are employees of Mari Signum, Mid-Atlantic. RDR, JLS, and OZ are named inventors on related patent applications. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in this chapter apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia L. Shamshina or Robin D. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shamshina, J.L., Zavgorodnya, O., Rogers, R.D. (2018). Advances in Processing Chitin as a Promising Biomaterial from Ionic Liquids. In: Itoh, T., Koo, YM. (eds) Application of Ionic Liquids in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 168. Springer, Cham. https://doi.org/10.1007/10_2018_63

Download citation

Publish with us

Policies and ethics