Generating Electric Current by Bioartificial Photosynthesis

  • Babu Halan
  • Jenny Tschörtner
  • Andreas SchmidEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)


Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.

The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined.

Graphical Abstract

Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts


Artificial photosynthesis Cyanobacteria Extracellular electron transfer Hydrogen Microbial fuel cells Photobioelectrochemical systems Photovoltaics 



Bioelectrochemical system



Chl a

Chlorophyll a




Fluorine-doped tin oxide


Indium tin oxide


Microbial electrochemical technology


Microbial fuel cell


Oxygen-evolving complex


Organic photovoltaic




Photosynthetic electron transport chain









The authors are grateful for using the facilities of the Centre for Biocatalysis (MiKat) at the Helmholtz Centre for Environmental Research, which is supported by European Regional Development Funds (EFRE – Europe funds Saxony) and the Helmholtz Association.


  1. 1.
    Govindjee, Shevela D (2011) Front Plant Sci 2:28PubMedPubMedCentralGoogle Scholar
  2. 2.
    Barber J, Tran PD (2013) J R Soc Interface 10:20120984PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bombelli P, Müller T, Herling TW, Howe CJ, Knowles TPJ (2015) Adv Energy Mater 5. Google Scholar
  4. 4.
    Hahn G (2013) Solar cells from ribbon silicon. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 44–51Google Scholar
  5. 5.
    Meyer N (2013) Low-priced modules for solar construction. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 52–55Google Scholar
  6. 6.
    Wengenmayr R (2013) Solar cells: an oveview. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 36–42Google Scholar
  7. 7.
    Harr M, Bonnet D, Fischer KH (2013) On the path towards power-grid parity. In: Wengenmayr R, Bührke T (eds) Renewable energy: sustainable concepts for the energy change. Wiley-VCH, Weinheim, pp 56–59Google Scholar
  8. 8.
    Xu T, Yu L (2014) Mater Today 17:11–15Google Scholar
  9. 9.
    McCormick AJ, Bombelli P, Bradley RW, Thorne R, Wenzel T, Howe CJ (2015) Energy Environ Sci 8:1092–1109Google Scholar
  10. 10.
    Kern J, Renger G (2007) Photosynth Res 94:183–202PubMedGoogle Scholar
  11. 11.
    Vermaas WFJ (2001) Encycl Life Sci 161:1–7Google Scholar
  12. 12.
    Kalyanasundaram K, Graetzel M (2010) Curr Opin Biotechnol 21:298–310PubMedGoogle Scholar
  13. 13.
    Berg JM, Tymoczko JL, Stryer L (2013) Biochemistry. W. H. Freemand and Company, New YorkGoogle Scholar
  14. 14.
    Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ et al (2011) Energy Environ Sci 4:4690–4698Google Scholar
  15. 15.
    Ducat DC, Way JC, Silver PA (2011) Trends Biotechnol 29:95–103PubMedGoogle Scholar
  16. 16.
  17. 17.
    Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Nat Struct Mol Biol 16:334–342PubMedGoogle Scholar
  18. 18.
    Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Biochim Biophys Acta Bioenerg 1857:247–255Google Scholar
  19. 19.
    Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) J Biol Chem 289:1930–1937PubMedGoogle Scholar
  20. 20.
    Darus L, Lu Y, Ledezma P, Keller J, Freguia S (2015) Bioresour Technol 195:248–253PubMedGoogle Scholar
  21. 21.
    Freguia S, Virdis B, Harnisch F, Keller J (2012) Electrochim Acta 82:165–174Google Scholar
  22. 22.
    Kato Y, Sugiura M, Oda A, Watanabe T (2009) Proc Natl Acad Sci U S A 106:17365–17370PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tanaka K, Tamamushi R, Ogawa T (1985) J Chem Technol Biotechnol 35B:191–197Google Scholar
  24. 24.
    Cereda A, Hitchcock A, Symes MD, Cronin L, Bibby TS, Jones AK (2014) PLoS One 9:e91484. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pisciotta JM, Zou Y, Baskakov IV (2011) Appl Microbiol Biotechnol 91:377–385PubMedGoogle Scholar
  26. 26.
    Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Biotechnol Bioeng 104:939–946PubMedGoogle Scholar
  27. 27.
    Logan BE (2009) Nat Rev Microbiol 7:375–381PubMedGoogle Scholar
  28. 28.
    Lovley DR (2008) Curr Opin Biotechnol 19:564–571PubMedGoogle Scholar
  29. 29.
    Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Appl Microbiol Biotechnol 98(20):8481–8495PubMedGoogle Scholar
  30. 30.
    Schröder U, Harnisch F, Angenent LT (2015) Energy Environ Sci 8:513–519Google Scholar
  31. 31.
    Koch C, Harnisch F (2016) ChemElectroChem 3:1–15Google Scholar
  32. 32.
    Sekar N, Ramasamy RP (2015) Electrochem Soc Interface 24:67–73Google Scholar
  33. 33.
    Rabaey K, Rozendal RA (2010) Nat Rev Microbiol 8:706–716PubMedGoogle Scholar
  34. 34.
    Ochiai H, Shibata H, Sawa Y, Shoga M, Ohta S (1983) Appl Biochem Biotechnol 8:289–303Google Scholar
  35. 35.
    Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Photochem Photobiol 87:946–964PubMedGoogle Scholar
  36. 36.
    Chen HC (2016) Solar fuels via artificial photosynthesis. PhD thesis, University of Amsterdam, Amsterdam. ISBN: 978-94-6182-644-2Google Scholar
  37. 37.
    Symes MD, Cogdell RJ, Cronin L (2013) Philos Trans Roy Soc London Ser A 371:20110411Google Scholar
  38. 38.
    Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Concepcion JJ, Binstead RA, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci U S A 110:20008–20013PubMedPubMedCentralGoogle Scholar
  39. 39.
    Krebs FC (2012) Stability and degradation of organic and polymer solar cells. Wiley, New JerseyGoogle Scholar
  40. 40.
    Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG, Cook TR, Barber J, Betley TA et al (2011) Science 334:645–648PubMedGoogle Scholar
  41. 41.
    Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Science 352:1210–1213PubMedGoogle Scholar
  42. 42.
    Ihssen J, Braun A, Gajda-Schrantz K, Faccio G, Thöny-Meyer L (2014) Curr Protein Pept Sci 15:374–384PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sekar N, Umasankar Y, Ramasamy RP (2014) Phys Chem Chem Phys 16:7862–7871PubMedGoogle Scholar
  44. 44.
    Tel-Vered R, Willner I (2014) ChemElectroChem 1:1778–1797Google Scholar
  45. 45.
    Yehezkeli O, Tel-Vered R, Michaeli D, Willner I, Nechushtai R (2014) Photosynth Res 120:71–85PubMedGoogle Scholar
  46. 46.
    Hamidi H, Hasan HK, Emek SC, Dilgin Y, Åkerlund HE, Albertsson P-Å, Leech D, Gorton L (2015) ChemSusChem 8:990–993PubMedGoogle Scholar
  47. 47.
    Calkins JO, Umasankar Y, O’Neill H, Ramasamy RP (2013) Energy Environ Sci 6:1891–1900Google Scholar
  48. 48.
    Ciesielski PN (2010) Photosystem I-based systems for photoelectrochemical energy conversion. Vanderbilt University, Nashville. PhD thesisGoogle Scholar
  49. 49.
    Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S (2012) Sci Rep 2:234PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF (2015) ChemistryOpen 4:111–114PubMedGoogle Scholar
  51. 51.
    McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Energy Environ Sci 4:4699Google Scholar
  52. 52.
    Bombelli P, Zarrouati M, Thorne RJ, Schneider K, Rowden SJL, Ali A, Yunus K, Cameron PJ, Fisher AC, Ian Wilson D et al (2012) Phys Chem Chem Phys 14:12221–12229PubMedGoogle Scholar
  53. 53.
    Madiraju KS, Lyew D, Kok R, Raghavan V (2012) Bioresour Technol 110:214–218PubMedGoogle Scholar
  54. 54.
    Sekar N, Jain R, Yan Y, Ramasamy RP (2016) Biotechnol Bioeng 113:675–679PubMedGoogle Scholar
  55. 55.
    Lin CC, Wei CH, Chen CI, Shieh CJ, Liu YC (2013) Bioresour Technol 135:640–643PubMedGoogle Scholar
  56. 56.
    Lovley DR (2012) Annu Rev Microbiol 66:391–409PubMedGoogle Scholar
  57. 57.
    Koch C, Aulenta F, Schröder U, Harnisch F (2016) Ref Modul Earth Syst Environ Sci:1–19Google Scholar
  58. 58.
    Malik S, Drott E, Grisdela P, Lee J, Lee C, Lowy D a, Gray S, Tender LM (2009) Energy Environ Sci 2:292Google Scholar
  59. 59.
    Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Environ Sci Technol 44:532–537PubMedGoogle Scholar
  60. 60.
    Velasquez-Orta SB, Curtis TP, Logan BE (2009) Biotechnol Bioeng 103:1068–1076PubMedGoogle Scholar
  61. 61.
    Rosenbaum M, He Z, Angenent LT (2010) Curr Opin Biotechnol 21:259–264PubMedGoogle Scholar
  62. 62.
    Takanezawa K, Nishio K, Kato S, Hashimoto K, Watanabe K (2010) Biosci Biotechnol Biochem 74:1271–1273PubMedGoogle Scholar
  63. 63.
    Wetser K, Liu J, Buisman C, Strik D (2015) Biomass Bioenergy 83:543–550Google Scholar
  64. 64.
    Schneider K (2015) Photo-microbial fuel cells. PhD thesis, University of Bath, Bath. ISNI: 0000 0004 5371 7013,
  65. 65.
    Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR (2008) J Appl Microbiol 104:640–650PubMedGoogle Scholar
  66. 66.
    Pisciotta JM, Zou Y, Baskakov IV (2010) PLoS One 5:e10821. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN (2011) Trends Biotechnol 29:41–49PubMedGoogle Scholar
  68. 68.
    Luimstra VM, Kennedy SJ, Güttler J, Wood SA, Williams DE, Packer MA (2014) J Appl Phycol 26:15–23Google Scholar
  69. 69.
    Inglesby AE, Yunus K, Fisher AC (2013) Phys Chem Chem Phys 15:6903–6911PubMedGoogle Scholar
  70. 70.
    Stöckl M, Schlegel C, Sydow A, Holtmann D, Ulber R, Mangold KM (2016) Electrochim Acta 220:444–452Google Scholar
  71. 71.
    Lee H, Choi S (2015) Lab Chip 15:391–398PubMedGoogle Scholar
  72. 72.
    Ryu W, Bai SJ, Park JS, Huang Z, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB (2010) Nano Lett 10:1137–1143PubMedGoogle Scholar
  73. 73.
    Lee D, Lee D, Won Y, Hong H, Kim Y, Song H, Pyun JC, Cho YS, Ryu W, Moon J (2016) Small 11:1446–1457Google Scholar
  74. 74.
    Wei X, Lee H, Choi S (2016) Sens Actuators B Chem 228:151–155Google Scholar
  75. 75.
    Papaharalabos G, Stinchcombe A, Horsfield I, Melhuish C, Greenman J, Ieropoulos I (2017) J Electrochem Soc 164:H3047–H3051Google Scholar
  76. 76.
    Bradley RW, Bombelli P, Lea-Smith DJ, Howe CJ (2013) Phys Chem Chem Phys 15:13611–13618PubMedGoogle Scholar
  77. 77.
    Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE (2015) Environ Sci Technol Lett 2:206–214Google Scholar
  78. 78.
    Li H, Liao JC (2013) Energy Environ Sci 6:2892–2899Google Scholar
  79. 79.
    Rasmussen M, Minteer S (2014) J Electrochem Soc 161:H647–H655Google Scholar
  80. 80.
    Kuehl M, Glud RN, Ramsing NB, Ploug H (1996) J Phycol 32:799–812Google Scholar
  81. 81.
    Wang J, Liu J, Liu T (2015) Biotechnol Biofuels 8:49PubMedPubMedCentralGoogle Scholar
  82. 82.
    Rosenbaum MA, Franks AE (2014) Appl Microbiol Biotechnol 98:509–518PubMedGoogle Scholar
  83. 83.
    Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Biofuel Res J 2:227–235Google Scholar
  84. 84.
    Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Trends Biotechnol 32(12):645–655PubMedGoogle Scholar
  85. 85.
    Halan B, Buehler K, Schmid A (2012) Trends Biotechnol 30. PubMedGoogle Scholar
  86. 86.
    Woodley JM, Titchener-Hooker NJ (1996) Bioprocess Eng 14:263–268Google Scholar
  87. 87.
    Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Environ Sci Technol 42:4146–4151PubMedGoogle Scholar
  88. 88.
    Turan B, Becker J-P, Urbain F, Finger F, Rau U, Haas S (2016) Nat Commun 7:12681PubMedPubMedCentralGoogle Scholar
  89. 89.
    Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A et al (2011) Science 332:805–809PubMedPubMedCentralGoogle Scholar
  90. 90.
    Bolton JR, Hall DO (1991) Photochem Photobiol 53:545–548Google Scholar
  91. 91.
    Wijffels RH, Barbosa MJ, Oswald WJ, Golueke CG, Usui N, Ikenouchi M, Hu Q, Chisti Y, Lestari S, Mäki-Avela P et al (2010) Science 329:796–799PubMedGoogle Scholar
  92. 92.
    Sakurai H, Masukawa H, Kitashima M, Inoue K (2015) Life 5:997–1018PubMedPubMedCentralGoogle Scholar
  93. 93.
    McCormick AJ, Bombelli P, Lea-Smith DJ, Bradley RW, Scott AM, Fisher AC, Smith AG, Howe CJ (2013) Energy Environ Sci 6:2682Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH – UFZLeipzigGermany

Personalised recommendations