Skip to main content

Electrochemical Applications in Metal Bioleaching

  • Chapter
  • First Online:
Bioelectrosynthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 167))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ag/AgCl:

Silver/silver chloride

Cu2S:

Chalcocite

CuFeS2 :

Chalcopyrite

FeS2 :

Pyrite

E corr :

Corrosion potential

i corr :

Corrosion current

MoS2 :

Molybdenum disulfide

PbS:

Galena

WS2 :

Tungsten disulfide

ZnS:

Sphalerite

AC:

Alternating current

AFM:

Atomic force microscope

DC:

Direct current

EDX:

Energy dispersive X-ray spectroscopy

EET:

Extracellular electron transfer

EIS:

Electrochemical impedance spectroscopy

M2+ :

Metallic cation (divalent)

MS:

Metal sulfide

OCP:

Open circuit potential

ORP:

Oxidation reduction potential (solution redox potential)

SCE:

Saturated calomel electrode

XPS:

X-ray photoelectron spectroscopy

XRF:

X-ray fluorescence

References

  1. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47

    CAS  PubMed  Google Scholar 

  2. Crundwell FK (2003) How do bacteria interact with minerals? Hydrometallurgy 71(1–2):75–81

    Article  CAS  Google Scholar 

  3. Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185

    Article  CAS  Google Scholar 

  4. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97(17):7529–7541

    Article  CAS  PubMed  Google Scholar 

  5. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65(1):1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571

    Article  CAS  PubMed  Google Scholar 

  7. Kato S (2015) Biotechnological aspects of microbial extracellular electron transfer. Microbes Environ 30(2):133–139

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662

    Article  CAS  PubMed  Google Scholar 

  9. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron. Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764

    Article  CAS  PubMed  Google Scholar 

  10. Newman DK (2010) Microbiology. Feasting on minerals. Science (New York, NY) 327(5967):793–794

    Article  CAS  Google Scholar 

  11. Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_34

    Google Scholar 

  12. Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  13. Watling HR (2015) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Fortschr Mineral 5(1):1–60

    CAS  Google Scholar 

  14. Brierley CL (2016) Biological processing of sulfidic ores and concentrates—integrating innovations. In: Lakshmanan VI, Roy R, Ramachandran V (eds) Innovative process development in metallurgical industry. Springer International, Cham, pp 109–135

    Chapter  Google Scholar 

  15. Johnson DB (2015) Biomining goes underground. Nature Geosci 8(3):165–166

    Article  CAS  Google Scholar 

  16. Quatrini R, Johnson DB (2016) Acidophiles: life in extremely acidic environments. Caister Academic, Norfolk

    Google Scholar 

  17. Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97(17):7543–7552

    Article  CAS  PubMed  Google Scholar 

  18. Hedrich S, Rübberdt K, Glombitza F, Sand W, Schippers A, Véliz MV, Willscher S (2017) 22nd Biohydrometallurgy Symposium. Solid State Phenomena, vol 262. Trans Tech Publications, Zurich

    Google Scholar 

  19. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321

    Google Scholar 

  20. Sander M, Hofstetter TB, Gorski CA (2015) Electrochemical analyses of redox-active iron minerals. A review of nonmediated and mediated approaches. Environ Sci Technol 49(10):5862–5878

    Article  CAS  PubMed  Google Scholar 

  21. Vaughan DJ (2006) Sulfide mineralogy and geochemistry. Introduction and overview. Rev Mineral Geochem 61(1):1–5

    Article  Google Scholar 

  22. Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part I. General aspects. Hydrometallurgy 93(3–4):81–87

    Article  CAS  Google Scholar 

  23. Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Chalcopyrite leaching and bioleaching. An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution. Hydrometallurgy 149:220–227

    Article  CAS  Google Scholar 

  24. Tshilombo AF (2004) Mechanism and kinetics of chalcopyrite passivation and depassivation during ferric and microbial leaching. Ph.D. thesis, University of British Columbia

    Google Scholar 

  25. Crundwell FK (1988) Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AICHE J 34(7):1128–1134

    Article  CAS  Google Scholar 

  26. Crundwell FK (2015) The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can Metall Q 54(3):279–288

    Article  CAS  Google Scholar 

  27. Osseo-Asare K (1992) Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy 29(1–3):61–90

    Article  CAS  Google Scholar 

  28. Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699

    Article  CAS  Google Scholar 

  29. Debernardi G, Carlesi C (2013) Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev 34(1):10–41

    Article  CAS  Google Scholar 

  30. Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31(1):565–577

    Article  CAS  Google Scholar 

  31. Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31(1):627–635

    Article  CAS  Google Scholar 

  32. Mustin C, Berthelin J, Marion P, Donato P d (1992) Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl Environ Microbiol 58(4):1175–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ballester A, Blázquez ML, González F, Muñoz JA (2007) Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 77–101

    Chapter  Google Scholar 

  34. Lara RH, Garcia-Meza JV, González I, Cruz R (2013) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 97(6):2711–2724

    Article  CAS  PubMed  Google Scholar 

  35. Gu G-H, Sun X-j, Hu K-T, Li J-H, Qiu G-Z (2012) Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Metals Soc China 22(5):1250–1254

    Article  CAS  Google Scholar 

  36. Mehta AP, Murr LE (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 9(3):235–256

    Article  CAS  Google Scholar 

  37. Zhao H, Wang J, Hu M, Qin W, Zhang Y, Qiu G (2013) Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Bioresour Technol 149:71–76

    Article  CAS  PubMed  Google Scholar 

  38. Misra M, Bukka K, Chen S (1996) The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Miner Eng 9(2):157–168

    Article  CAS  Google Scholar 

  39. Arena FA, Suegama PH, Bevilaqua D, dos Santos ALA, Fugivara CS, Benedetti AV (2016) Simulating the main stages of chalcopyrite leaching and bioleaching in ferrous ions solution. An electrochemical impedance study with a modified carbon paste electrode. Miner Eng 92:229–241

    Article  CAS  Google Scholar 

  40. Hiroyoshi N, Kitagawa H, Tsunekawa M (2008) Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 91(1–4):144–149

    Article  CAS  Google Scholar 

  41. Bevilaqua D, Acciari HA, Benedetti AV, Garcia Jr O (2007) Electrochemical techniques used to study bacterial-metal sulfides interactions in acidic environments. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 59–76

    Chapter  Google Scholar 

  42. Bevilaqua D, Suegama PH, Garcia Jr O, Benedetti AV (2011) Electrochemical studies of sulphide minerals in the presence and absence of A. ferrooxidans. In: Sobral LGS, de Oliveira DM, de Souza CEG (eds) Biohydro-metallurgical processes: a practical approach. Centro de Tecnologia Mineral, Ministry of Science, Education and Innovation, Rio de Janeiro, pp 141–167

    Google Scholar 

  43. Horta DG, Bevilaqua D, Acciari HA, Garcia Jr O, Benedetti AV (2009) Optimization of the use of carbon paste electrodes (CPE) for electrochemical study of the chalcopyrite. Quím Nova 32(7):1734–1738

    Article  CAS  Google Scholar 

  44. Olvera OG, Rebolledo M, Asselin E (2016) Atmospheric ferric sulfate leaching of chalcopyrite. Thermodynamics, kinetics and electrochemistry. Hydrometallurgy 165:148–158

    Article  CAS  Google Scholar 

  45. Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2006) The active-to-passive transition of chalcopyrite. In: 209th ECS Meeting. Denver, Colorado, May 7–May 12, pp 165–175

    Google Scholar 

  46. Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) The active-passive behavior of chalcopyrite. J Electrochem Soc 154(6):C299–C311

    Article  CAS  Google Scholar 

  47. Renock D, Shuller-Nickles LC (2015) Predicting geologic corrosion with electrodes. Elements 11(5):331–336

    Article  CAS  Google Scholar 

  48. Warren GW, Wadsworth ME, El-Raghy SM (1982) Passive and transpassive anodic behavior of chalcopyrite in acid solutions. Metall Trans B 13(4):571–579

    Article  Google Scholar 

  49. Holmes PR, Crundwell FK (1995) Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy 39(1–3):353–375

    Article  CAS  Google Scholar 

  50. Majima H (2013) How oxidation affects selective flotation of complex sulphide ores. Can Metall Q 8(3):269–273

    Article  Google Scholar 

  51. Attia YA, El-Zeky M (1990) Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching. Int J Miner Process 30(1–2):99–111

    Article  CAS  Google Scholar 

  52. Wan RY, Miller JD, Simkovich G (1984) Enhanced ferric sulphate leaching of copper from CuFeS2 and C particulate aggregates. In: Proceedings of MINTEK 50: an International Conference on Recent Advances in Mineral Science and Technology, Johannesburg, South Africa (2), pp 575–588

    Google Scholar 

  53. Liu W, Yang H-Y, Song Y, Tong L-L (2015) Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy 152:69–75

    Article  CAS  Google Scholar 

  54. Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM (2016) Bioleaching of different pyrites and sphalerite in the presence of graphite. Geomicrobiol J:1–12

    Google Scholar 

  55. Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part III. Effect of redox potential on the silver-catalyzed process. Hydrometallurgy 93(3–4):97–105

    Article  CAS  Google Scholar 

  56. Ghahremaninezhad A, Radzinski R, Gheorghiu T, Dixon DG, Asselin E (2015) A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy 155:95–104

    Article  CAS  Google Scholar 

  57. Muñoz JA, Gómez C, Ballester A, Blázquez ML, González F, Figueroa M (1997) Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. J Appl Electrochem 28(1):49–56

    Article  Google Scholar 

  58. Biegler T (1977) Reduction kinetics of a chalcopyrite electrode surface. J Electroanal Chem Interfacial Electrochem 85(1):101–106

    Article  CAS  Google Scholar 

  59. Felker DL (1984) The electrochemical dissolution of copper sulfides using a fluidized bed electrochemical reactor. PhD thesis of Iowa State University, Ames, Retrospective Theses and Dissertations, 8162

    Google Scholar 

  60. Yunker SB, Radovich JM (1986) Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron. Biotechnol Bioeng 28(12):1867–1875

    Article  CAS  PubMed  Google Scholar 

  61. Natarajan KA (1992) Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans. Biotechnol Bioeng 39(9):907–913

    Article  CAS  PubMed  Google Scholar 

  62. Natarajan KA (1992) Bioleaching of sulphides under applied potentials. Hydrometallurgy 29(1–3):161–172

    Article  CAS  Google Scholar 

  63. Natarajan KA (1992) Electrobioleaching of base metal sulfides. Metall Trans B 23(1):5–11

    Article  Google Scholar 

  64. Selvi SC, Modak JM, Natarajan KA (1998) Electrobioleaching of sphalerite flotation concentrate. Miner Eng 11(8):783–788

    Article  CAS  Google Scholar 

  65. Kumari A, Natarajan KA (2001) Electrobioleaching of polymetallic ocean nodules. Hydrometallurgy 62(2):125–134

    Article  CAS  Google Scholar 

  66. Kumari A, Natarajan KA (2002) Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Miner Eng 15(1–2):103–106

    Article  CAS  Google Scholar 

  67. Kumari A, Natarajan KA (2002) Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms. Int J Miner Process 66(1–4):29–47

    Article  CAS  Google Scholar 

  68. Ahmadi A, Ranjbar M, Schaffie M (2012) Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Miner Eng 34:11–18

    Article  CAS  Google Scholar 

  69. Ahmadi A, Ranjbar M, Schaffie M (2013) Effect of activated carbon addition on the conventional and electrochemical bioleaching of chalcopyrite concentrates. Geomicrobiol J 30(3):237–244

    Article  CAS  Google Scholar 

  70. Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104(1):99–105

    Article  CAS  Google Scholar 

  71. Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M (2011) Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106(1–2):84–92

    Article  CAS  Google Scholar 

  72. Third KA, Cord-Ruwisch R, Watling HR (2002) Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol Bioeng 78(4):433–441

    Article  CAS  PubMed  Google Scholar 

  73. Harvey PI, Crundwell FK (1996) The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials. Miner Eng 9(10):1059–1068

    Article  CAS  Google Scholar 

  74. Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65(12):5285–5292

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65(7):2987–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Holmes PR, Crundwell FK (2013) Polysulfides do not cause passivation. Results from the dissolution of pyrite and implications for other sulfide minerals. Hydrometallurgy 139:101–110

    Article  CAS  Google Scholar 

  77. Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy 144–145:7–14

    Article  CAS  Google Scholar 

  78. Lotfalian M, Ranjbar M, Fazaelipoor MH, Schaffie M, Manafi Z (2015) The effect of redox control on the continuous bioleaching of chalcopyrite concentrate. Miner Eng 81:52–57

    Article  CAS  Google Scholar 

  79. Klauber C (2008) A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Miner Process 86(1–4):1–17

    Article  CAS  Google Scholar 

  80. Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155

    Article  CAS  PubMed  Google Scholar 

  81. Ni G, Christel S, Roman P, Wong ZL, Bijmans MFM, Dopson M (2016) Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. Res Microbiol 167(7):568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kurt Tanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanne, C.K., Schippers, A. (2017). Electrochemical Applications in Metal Bioleaching. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_36

Download citation

Publish with us

Policies and ethics