Skip to main content

Scalable Expansion of Pluripotent Stem Cells

  • Chapter
  • First Online:
Book cover Engineering and Application of Pluripotent Stem Cells

Abstract

Large-scale expansion of pluripotent stem cells (PSC) in a robust, well-defined, and monitored process is essential for production of cell-based therapeutic products. The transition from laboratory-scale protocols to industrial-scale production is one of the first milestones to be achieved in order to use both human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) as the starting material for cellular products. The methods to be developed require adjustment of the culture platforms, optimization of culture parameters, and adaptation of downstream procedures. Optimization of expansion protocols and their scalability has become much easier with the design of bioreactor systems that enable continuous monitoring of culture parameters, continuous media change, and support software for automated control. This chapter highlights the common properties that are required for production of scalable, reproducible, homogeneous, and clinically suitable cell therapy products. We describe the available platforms for large-scale expansion of PSCs and parameters that should be considered when optimizing the expansion protocols in a scalable bioreactor. All the above are detailed in the light of the requirements and challenges of bringing a cell-based therapeutic product to the clinic and ultimately to the market. We discuss some considerations that should be taken into account, such as cost-effectiveness, good manufacturing practice, and regulatory guidelines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Priest CA, Manley NC, Denham J, Wirth III ED, Lebkowski JS (2015) Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 10(8):939–958

    Article  CAS  Google Scholar 

  2. Schwartz SD et al. (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516

    Article  Google Scholar 

  3. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017

    Article  Google Scholar 

  4. KYODO (2015) First iPS cell transplant patient makes progress one year on

    Google Scholar 

  5. Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17(3):194–200

    Article  CAS  Google Scholar 

  6. Thomson JA et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  7. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95

    CAS  Google Scholar 

  8. Schuldiner M et al. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97(21):11307–11312

    Article  CAS  Google Scholar 

  9. Lavon N, Yanuka O, Benvenisty N (2004) Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72(5):230–238

    Article  CAS  Google Scholar 

  10. Izrael M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, Itskovitz-Eldor J, Chebath J, Revel M (2007) Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci 34(3):310–323

    Article  CAS  Google Scholar 

  11. Chris Mason DAB, Culme-Seymour EJ, Davie NL (2011) Cell therapy industry: billion dollar global business with unlimited potential. Regen Med 6(3):265–272

    Article  Google Scholar 

  12. Davidson MD, Ware BR, Khetani SR (2015) Stem cell-derived liver cells for drug testing and disease modeling. Discov Med 19(106):349–358

    Google Scholar 

  13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  14. Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14(6):427–439

    Article  CAS  Google Scholar 

  15. Bellin M, Marchetto CM, Gage FH, Mummery CL (2012) Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13:713–726

    Article  Google Scholar 

  16. ISSCR (2016) Guidlines for stem cell research and clinical translation. International Society for Stem Cell Research, Skokie. Available at http://www.isscr.org/professional-resources/policy/2016-guidelines/guidelines-for-stem-cell-research-and-clinical-translation

  17. Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Lara AR, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep 3(6):1132–1146

    Article  CAS  Google Scholar 

  18. Kempf H, Andree B, Zweigerdt R (2016) Large-scale production of human pluripotent stem cellderived cardiomyocytes. Adv Drug Deliv Rev 15:18–30

    Article  Google Scholar 

  19. Kelly OG et al. (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756

    Article  CAS  Google Scholar 

  20. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21(3):257–265

    Article  CAS  Google Scholar 

  21. Kropp EM, Oleson B, Broniowska KA, Bhattacharya S, Chadwick AC, Diers AR, Hu Q, Sahoo D, Hogg N, Boheler KR, Corbett JA, Gundry RL (2015) Inhibition of an NAD+ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 4(5):483–493

    Article  CAS  Google Scholar 

  22. Ben-David U et al. (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12(2):167–179

    Article  CAS  Google Scholar 

  23. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D, Burridge PW, Wu JC, Wersto RP, Chan GC, Rao S, Wollscheid B, Gundry RL (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3(1):185–203

    Article  CAS  Google Scholar 

  24. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13(9):655–672

    Article  CAS  Google Scholar 

  25. Agulnick AD, Ambruzs D, Moorman MA, Bhoumik A, Cesario RM, Payne JK, Kelly JR, Haakmeester C, Srijemac R, Wilson AZ, Kerr J, Frazier MA, Kroon EJ, D’Amour KA (2015) Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 4(10):1214–1222

    Article  CAS  Google Scholar 

  26. Schwartz SD et al. (2016) Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investig Ophthalmol Vis Sci 57(5):ORSFc1–ORSFc9

    Article  CAS  Google Scholar 

  27. Salmikangas P et al. (2015) Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Adv Exp Med Biol 871:103–130

    Article  Google Scholar 

  28. Campbell A et al. (2015) Concise review: process development considerations for cell therapy. Stem Cells Transl Med 4(10):1155–1163

    Article  Google Scholar 

  29. Kropp C, Kempf H, Halloin C, Robles-Diaz D, Franke A, Scheper T, Kinast K, Knorpp T, Joos TO, Haverich A, Martin U, Zweigerdt R, Olmer R (2016) Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Transl Med 5(10):1289–1301

    Article  Google Scholar 

  30. Yeo D, Kiparissides A, Cha JM, Aguilar-Gallardo C, Polak JM, Tsiridis E, Pistikopoulos EN, Mantalaris A (2013) Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. Plos One 8(12):e81728

    Article  Google Scholar 

  31. Kamao H et al. (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2(2):205–218

    Article  CAS  Google Scholar 

  32. Roberts I, Moens N, Moncaubeig F, Egloff M, Coffey P, Mason C. The importance of using small scale bioreactor mimics to scale up human embryonic stem cell culture. Available at http://studylib.net/doc/10488641/the-importance-of-using-small-scale-bioreactor-mimics-to-...

  33. Chen AK, Reuveny S, Oh SK (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31(7):1032–1046

    Article  Google Scholar 

  34. Chen AK et al. (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 7(2):97–111

    Article  CAS  Google Scholar 

  35. Sart S et al. (2013) Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. J Tissue Eng Regen Med 7(7):537–551

    Article  CAS  Google Scholar 

  36. Oh SK et al. (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

    Article  CAS  Google Scholar 

  37. Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6(2):248–259

    Article  Google Scholar 

  38. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28(4):361–364

    Article  CAS  Google Scholar 

  39. Olmer R et al. (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5(1):51–64

    Article  CAS  Google Scholar 

  40. Come J, Nissan X, Aubry L, Tournois J, et al. (2008) Improvement of culture conditions of human embryoid bodies using a controlled perfused and dialyzed bioreactor system. Tissue Eng Part C Methods 14(4):289–298

    Article  CAS  Google Scholar 

  41. Fridley KM et al. (2010) Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors. Tissue Eng Part A 16(11):3285–3298

    Article  CAS  Google Scholar 

  42. Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86(5):493–502

    Article  CAS  Google Scholar 

  43. Wang X et al. (2006) Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with ES-derived cardiomyocytes in vitro. Biotechnol Prog 22(3):811–818

    Article  Google Scholar 

  44. Timmins NE et al. (2012) Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol Bioeng 109(7):1817–1826

    Article  CAS  Google Scholar 

  45. Correia C et al. (2014) Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev 10(6):786–801

    Article  CAS  Google Scholar 

  46. Singh H et al. (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4(3):165–179

    Article  CAS  Google Scholar 

  47. Wolfe RP et al. (2012) Effects of shear stress on germ lineage specification of embryonic stem cells. Integr Biol 4(10):1263–1273

    Article  CAS  Google Scholar 

  48. Gilbertson JA et al. (2006) Scaled-up production of mammalian neural precursor cell aggregates in computer-controlled suspension bioreactors. Biotechnol Bioeng 94(4):783–792

    Article  CAS  Google Scholar 

  49. Schroeder M et al. (2005) Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 92(7):920–933

    Article  CAS  Google Scholar 

  50. Fridley KM, Kinney MA, McDevitt TC (2012) Hydrodynamic modulation of pluripotent stem cells. Stem Cell Res 3(6):45

    Article  CAS  Google Scholar 

  51. Bauwens C et al. (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90(4):452–461

    Article  CAS  Google Scholar 

  52. Cormier JT, Nieden N, Rancourt DE, Kallos MS (2006) Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng 12(11):3233–3245

    Article  CAS  Google Scholar 

  53. Youn BS et al. (2005) Large-scale expansion of mammary epithelial stem cell aggregates in suspension bioreactors. Biotechnol Prog 21(3):984–993

    Article  CAS  Google Scholar 

  54. Wu J (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 43(2):81–94

    Article  CAS  Google Scholar 

  55. Thomas CR, Zhang Z, Al-Rubeai M (1992) Effect of Pluronic F-68 on the mechanical properties of mammalian cells. Enzym Microb Technol 14(12):980–983

    Article  Google Scholar 

  56. Wu J, Rostami MR, Cadavid Olaya DP, Tzanakakis ES (2014) Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9(7):e102486

    Article  Google Scholar 

  57. Olmer R et al. (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18(10):772–784

    Article  CAS  Google Scholar 

  58. Abaci HE et al. (2010) Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 298(6):C1527–C1537

    Article  CAS  Google Scholar 

  59. Chen HF, Kuo H, Chen W, Wu FC, Yang YS, Ho HN (2009) A reduced oxygen tension (5%) is not beneficial for maintaining human embryonic stem cells in the undifferentiated state with short splitting intervals. Hum Reprod 24(1):71–80

    Article  CAS  Google Scholar 

  60. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102(13):4783–4788

    Article  CAS  Google Scholar 

  61. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161

    Article  CAS  Google Scholar 

  62. Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140(12):2535–2547

    Article  CAS  Google Scholar 

  63. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Article  CAS  Google Scholar 

  64. Teo A, Mantalaris A, Lim M Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochem Eng J 90:8–15

    Google Scholar 

  65. Cechin S et al. (2014) Influence of in vitro and in vivo oxygen modulation on beta cell differentiation from human embryonic stem cells. Stem Cells Transl Med 3(3):277–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neta Lavon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavon, N., Zimerman, M., Itskovitz-Eldor, J. (2017). Scalable Expansion of Pluripotent Stem Cells. In: Martin, U., Zweigerdt, R., Gruh, I. (eds) Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, vol 163. Springer, Cham. https://doi.org/10.1007/10_2017_26

Download citation

Publish with us

Policies and ethics