Skip to main content

Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production

  • Chapter
  • First Online:
Synthetic Biology – Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheng J, Feng X Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554

    Google Scholar 

  2. Shin JH, Kim HU, Kim DI, Lee SY Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31(6):925–935

    Google Scholar 

  3. Weusthuis RA, Lamot I, van der Oost J, Sanders JPM Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol 29(4):153–158

    Google Scholar 

  4. Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41(22):7915–7921

    Article  CAS  Google Scholar 

  5. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804

    Article  CAS  Google Scholar 

  6. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162

    Article  CAS  Google Scholar 

  7. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328

    Article  CAS  Google Scholar 

  8. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563

    Article  CAS  Google Scholar 

  9. Stephanopoulos G (2008) Metabolic engineering: enabling technology for biofuels production. Metab Eng 10(6):293–294

    Article  CAS  Google Scholar 

  10. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74

    Article  CAS  Google Scholar 

  11. Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14(1–2):78–88

    Article  CAS  Google Scholar 

  12. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802

    Article  CAS  Google Scholar 

  13. Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681

    Article  CAS  Google Scholar 

  14. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5–16

    Article  CAS  Google Scholar 

  15. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8(1):1–8

    Article  CAS  Google Scholar 

  16. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358

    Article  CAS  Google Scholar 

  17. Huttanus H, Sheng J, Feng X (2016) Metabolic engineering for production of small molecule drugs: challenges and solutions. Fermentation 2(1):4

    Article  Google Scholar 

  18. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311

    Article  CAS  Google Scholar 

  19. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  Google Scholar 

  20. Huang Jr C, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399

    Article  CAS  Google Scholar 

  21. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616

    Article  CAS  Google Scholar 

  22. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537

    Article  CAS  Google Scholar 

  23. Clomburg J, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419–434

    Article  CAS  Google Scholar 

  24. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287

    Article  CAS  Google Scholar 

  25. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64(1):34–50

    Article  CAS  Google Scholar 

  26. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391

    Article  CAS  Google Scholar 

  27. Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8:122

    Article  CAS  Google Scholar 

  28. Chen G-Q (2012) New challenges and opportunities for industrial biotechnology. Microb Cell Factories 11:111

    Article  CAS  Google Scholar 

  29. Kwok R (2010) Five hard truths for synthetic biology. Nature 463(7279):288

    Article  CAS  Google Scholar 

  30. Antoniewicz M (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325

    Article  CAS  Google Scholar 

  31. Young JD (2014) 13C metabolic flux analysis of recombinant expression hosts. Curr Opin Biotechnol 30:238–245

    Article  CAS  Google Scholar 

  32. Wang Y, San K-Y, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24(6):994–999

    Article  CAS  Google Scholar 

  33. Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39

    Article  CAS  Google Scholar 

  34. Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2015) Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting. Biotechnol Bioeng 113:91–100

    Article  CAS  Google Scholar 

  35. Hayakawa K, Kajihata S, Matsuda F, Shimizu H (2015) 13C-metabolic flux analysis in S-adenosyl-l-methionine production by Saccharomyces cerevisiae. J Biosci Bioeng 120:532–538

    Article  CAS  Google Scholar 

  36. Feng X, Zhao H (2013) Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Factories 12(1):114

    Article  CAS  Google Scholar 

  37. Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Engineering alcohol tolerance in yeast. Science 346(6205):71–75

    Article  CAS  Google Scholar 

  38. Fu Y, Yoon J, Jarboe L, Shanks J (2015) Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress. Appl Microbiol Biotechnol 99(10):4397–4408

    Article  CAS  Google Scholar 

  39. Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75(24):7631–7638

    Article  CAS  Google Scholar 

  40. Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  CAS  Google Scholar 

  41. Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62(6):739–750

    Article  CAS  Google Scholar 

  42. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195–206

    Article  CAS  Google Scholar 

  43. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  CAS  Google Scholar 

  44. de Graaf AA (2000) Use of 13C labelling and NMR spectroscopy in metabolic flux analysis. In: Barbotin JN, Portais JC (eds) NMR in biotechnology: theory and applications, vol 4. Horizon Scientific Press, Norwich

    Google Scholar 

  45. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1(4):282–290

    Article  CAS  Google Scholar 

  46. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31(01):41–106

    Article  CAS  Google Scholar 

  47. Feng X, Zhuang WQ, Colletti P, Tang YJ (2012) Metabolic pathway determination and flux analysis in nonmodel microorganisms through 13C-isotope labeling. Methods Mol Biol (Clifton) 881:309–330

    Article  CAS  Google Scholar 

  48. You L, Page L, Feng X, Berla B, Pakrasi HB, Tang YJ (2012) Metabolic pathway confirmation and discovery through 13C-labeling of proteinogenic amino acids. J Vis Exp 59:e3583

    Google Scholar 

  49. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  Google Scholar 

  50. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EEK, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28(2):362–375

    Article  CAS  Google Scholar 

  51. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149

    Article  CAS  Google Scholar 

  52. Papini M, Nookaew I, Siewers V, Nielsen J (2012) Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl Microbiol Biotechnol 95(4):1001–1010

    Article  CAS  Google Scholar 

  53. Wang Y, San K-Y, Bennett GN (2013) Improvement of NADPH bioavailability in Escherichia coli by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40(12):1449–1460

    Article  CAS  Google Scholar 

  54. Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S (2011) Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77(18):6644–6652

    Article  CAS  Google Scholar 

  55. Hou J, Vemuri G, Bao X, Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82(5):909–919

    Article  CAS  Google Scholar 

  56. Berrios-Rivera SJ, Bennett GN, San K-Y (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4(3):217–229

    Article  CAS  Google Scholar 

  57. He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, Peng L (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111(3):575–585

    Article  CAS  Google Scholar 

  58. Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD (2012) An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14(6):687–704

    Article  CAS  Google Scholar 

  59. Guo W, Chen Y, Wei N, Feng X (2016) Investigate the metabolic reprogramming of Saccharomyces cerevisiae for enhanced resistance to mixed fermentation inhibitors via 13C metabolic flux analysis. PLoS One 11(8):e0161448

    Article  CAS  Google Scholar 

  60. Quarterman J, Skerker JM, Feng X, Liu IY, Zhao H, Arkin AP, Jin YS (2016) Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. J Biotechnol 229:13–21

    Article  CAS  Google Scholar 

  61. Guo W, Sheng J, Feng X (2016) 13C-metabolic flux analysis: an accurate approach to demystify microbial metabolism for biochemical production. Bioengineering 3(1):3

    Article  Google Scholar 

  62. Zamboni N, Fendt S-M, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4(6):878–892

    Article  CAS  Google Scholar 

  63. Tang YJ, Martin HG, Deutschbauer A, Feng X, Huang R, Llora X, Arkin A, Keasling JD (2009) Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnol Prog 25(5):1254–1259

    Article  CAS  Google Scholar 

  64. Adler P, Bolten CJ, Dohnt K, Hansen CE, Wittmann C (2013) Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Appl Environ Microbiol 79(18):5670–5681

    Article  CAS  Google Scholar 

  65. Klein T, Lange S, Wilhelm N, Bureik M, Yang T-H, Heinzle E, Schneider K (2014) Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe–a quantitative approach using 13C-based metabolic flux analysis. Metab Eng 21:34–45

    Article  CAS  Google Scholar 

  66. Jazmin L, O’Grady J, Ma F, Allen D, Morgan J, Young J (2014) Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism. In: Dieuaide-Noubhani M, Alonso AP (eds) Plant metabolic flux analysis, vol 1090. Humana Press, Totowa, pp. 181–210

    Chapter  Google Scholar 

  67. Murphy TA, Dang CV, Young JD (2013) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206–217

    Article  CAS  Google Scholar 

  68. Jazmin L, Young J (2013) Isotopically nonstationary 13C metabolic flux analysis. In: Alper HS Systems metabolic engineering, vol 985. Humana Press, Totowa, pp 367–390

    Google Scholar 

  69. Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 24(6):979–986

    Article  CAS  Google Scholar 

  70. Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. In: Kragl U (ed) Technology transfer in biotechnology, vol 92. Springer, Berlin, pp 145–172

    Google Scholar 

  71. Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79(6):2483–2490

    Article  CAS  Google Scholar 

  72. Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55(1):101–117

    Article  CAS  Google Scholar 

  73. Wiechert W, Siefke C, de Graaf AA, Marx A (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 55(1):118–135

    Article  CAS  Google Scholar 

  74. Wittmann C, Heinzle E (2001) MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol Bioeng 72(6):642–647

    Article  CAS  Google Scholar 

  75. Guo W, Luo S, He Z, Feng X (2015) 13C pathway analysis of biofilm metabolism of shewanella oneidensis MR-1. RSC Adv 5(50):39840–39843

    Article  CAS  Google Scholar 

  76. Christensen B, Karoly Gombert A, Nielsen J (2002) Analysis of flux estimates based on 13C-labelling experiments. Eur J Biochem 269(11):2795–2800

    Article  CAS  Google Scholar 

  77. Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose. Biotechnol Bioeng 68(6):652–659

    Article  CAS  Google Scholar 

  78. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3(8):1299–1311

    Article  CAS  Google Scholar 

  79. Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, et al. (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128(1):93–111

    Article  CAS  Google Scholar 

  80. Millard P, Letisse F, Sokol S, Portais J-C (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28(9):1294–1296

    Article  CAS  Google Scholar 

  81. Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85(3):259–268

    Article  CAS  Google Scholar 

  82. Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, et al. (2014) CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics. Nucleic Acids Res 43:D549–D557

    Article  CAS  Google Scholar 

  83. Shupletsov MS, Golubeva LI, Rubina SS, Podvyaznikov DA, Iwatani S, Mashko SV (2014) OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microb Cell Factories 13:152

    Google Scholar 

  84. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2013) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29(1):143–145

    Article  CAS  Google Scholar 

  85. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68–86

    Article  CAS  Google Scholar 

  86. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30(9):1333–1335

    Article  CAS  Google Scholar 

  87. Zamboni N, Fischer E, Sauer U (2005) FiatFlux–a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinf 6:209–209

    Article  CAS  Google Scholar 

  88. Garcia-Albornoz M, Thankaswamy-Kosalai S, Nilsson A, Väremo L, Nookaew I, Nielsen J (2014) BioMet toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Res 42(Web server issue):W175–W181

    Article  CAS  Google Scholar 

  89. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686–699

    Article  CAS  Google Scholar 

  90. Chopra P, Kamma A (2006) Engineering life through synthetic biology. In Silico Biol 6(5):401–410

    CAS  Google Scholar 

  91. Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54

    Article  CAS  Google Scholar 

  92. Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44

    Article  CAS  Google Scholar 

  93. Inui HOK, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate: NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262(19):6

    Google Scholar 

  94. Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ (2014) Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21:46–59

    Article  CAS  Google Scholar 

  95. Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168

    Article  CAS  Google Scholar 

  96. Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72(15):3709–3714

    Article  CAS  Google Scholar 

  97. Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Factories 4:30

    Article  CAS  Google Scholar 

  98. Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M (2001) Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183(9):2929–2936

    Article  CAS  Google Scholar 

  99. Panagiotou G, Andersen MR, Grotkjaer T, Regueira TB, Hofmann G, Nielsen J, Olsson L (2008) Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS One 3(12):e3847

    Article  CAS  Google Scholar 

  100. de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories 13:39–39

    Article  CAS  Google Scholar 

  101. Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284(43):29526–29535

    Article  CAS  Google Scholar 

  102. Davis MS, Solbiati J, Cronan Jr JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275(37):28593–28598

    Article  CAS  Google Scholar 

  103. Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10(6):333–339

    Article  CAS  Google Scholar 

  104. Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14(6):653–660

    Article  CAS  Google Scholar 

  105. Subrahmanyam S, Cronan Jr JE (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180(17):4596–4602

    CAS  Google Scholar 

  106. Suástegui M, Guo W, Feng X, Shao Z (2016) Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng 113(12):2676–2685

    Article  CAS  Google Scholar 

  107. Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams VII, Rufo GAJ, et al. (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22(1):8–18

    Article  CAS  Google Scholar 

  108. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15(5):448–452

    Article  CAS  Google Scholar 

  109. Dauner M, Bailey JE, Sauer U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76(2):144–156

    Article  CAS  Google Scholar 

  110. Berrios-Rivera SJ, Bennett GN, San K-Y (2002) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4(3):230–237

    Article  CAS  Google Scholar 

  111. San K-Y, Bennett GN, Berrios-Rivera SJ, Vadali RV, Yang Y-T, Horton E, Rudolph FB, Sariyar B, Blackwood K (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4(2):182–192

    Article  CAS  Google Scholar 

  112. Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307–2317

    Article  CAS  Google Scholar 

  113. Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153(9):3044–3054

    Article  CAS  Google Scholar 

  114. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93(4):665–673

    Article  CAS  Google Scholar 

  115. Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007) The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71(5):1365–1369

    Article  CAS  Google Scholar 

  116. Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49–49

    Article  CAS  Google Scholar 

  117. Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Factories 7:9–9

    Article  CAS  Google Scholar 

  118. Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9–9

    Article  CAS  Google Scholar 

  119. Runquist D, Hahn-Hägerdal B, Bettiga M (2010) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76(23):7796–7802

    Article  CAS  Google Scholar 

  120. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130(3):316–319

    Article  CAS  Google Scholar 

  121. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243–255

    Article  CAS  Google Scholar 

  122. Krahulec S, Klimacek M, Nidetzky B (2009) Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 4(5):684–694

    Article  CAS  Google Scholar 

  123. Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009) Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75(11):3818–3822

    Article  CAS  Google Scholar 

  124. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68(4):1604–1609

    Article  CAS  Google Scholar 

  125. Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897

    Article  CAS  Google Scholar 

  126. Zhang G-C, Liu J-J, Ding W-T (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78(4):1081–1086

    Article  CAS  Google Scholar 

  127. Wasylenko TM, Stephanopoulos G (2015) Metabolomic and 13C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112(3):470–483

    Article  CAS  Google Scholar 

  128. Kim YM, Cho H-S, Jung GY, Park JM (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941–2946

    Article  CAS  Google Scholar 

  129. Lee W-H, Park J-B, Park K, Kim M-D, Seo J-H (2007) Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76(2):329–338

    Article  CAS  Google Scholar 

  130. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333–341

    Article  CAS  Google Scholar 

  131. Wang Y, San K-Y, Bennett G (2013) Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol 97(15):6883–6893

    Article  CAS  Google Scholar 

  132. Chemler JA, Fowler ZL, McHugh KP, Koffas MAG (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12(2):96–104

    Article  CAS  Google Scholar 

  133. Kim S, Lee CH, Nam SW, Kim P (2011) Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett Appl Microbiol 52(5):433–440

    Article  CAS  Google Scholar 

  134. Sánchez AM, Andrews J, Hussein I, Bennett GN, San K-Y (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (udhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22(2):420–425

    Article  CAS  Google Scholar 

  135. Chou H-H, Marx CJ, Sauer U (2015) Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 11(2):e1005007

    Article  CAS  Google Scholar 

  136. Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labeling experiments. In: Sahm H, Wandrey C (eds) Metabolic engineering, vol 54. Springer, Berlin, pp 109–154

    Google Scholar 

  137. Wittmann C, Heinzle E (2001) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum. Eur J Biochem 268(8):2441–2455

    Article  CAS  Google Scholar 

  138. Klapa MI, Aon J-C, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem 270(17):3525–3542

    Article  CAS  Google Scholar 

  139. Quek L-E, Wittmann C, Nielsen L, Kromer J (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Factories 8(1):25

    Article  CAS  Google Scholar 

  140. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784

    Article  CAS  Google Scholar 

  141. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109

    Article  CAS  Google Scholar 

  142. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168

    Article  CAS  Google Scholar 

  143. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71(12):8587–8596

    Article  CAS  Google Scholar 

  144. Bommareddy RR, Chen Z, Rappert S, Zeng A-P (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    Article  CAS  Google Scholar 

  145. Hu X-Q, Chu J, Zhang S-L, Zhuang Y-P, Wang Y-H, Zhu S, Zhu Z-G, Yuan Z-Y (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris. Enzym Microb Technol 40(4):669–674

    Article  CAS  Google Scholar 

  146. Hu X-Q, Chu J, Zhang Z, Zhang S-L, Zhuang Y-P, Wang Y-H, Guo M-J, Chen H-X, Yuan Z-Y (2008) Effects of different glycerol feeding strategies on S-adenosyl-l-methionine biosynthesis by PGAP-driven Pichia pastoris overexpressing methionine adenosyltransferase. J Biotechnol 137(1–4):44–49

    Article  CAS  Google Scholar 

  147. Birnbaum S, Bailey JE (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37(8):736–745

    Article  CAS  Google Scholar 

  148. Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2(4):328–338

    Article  CAS  Google Scholar 

  149. Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM (2015) Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 17:2982–2992

    Article  Google Scholar 

  150. Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120:396–404

    Article  CAS  Google Scholar 

  151. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31

    Article  CAS  Google Scholar 

  152. King T, Lucchini S, Hinton JCD, Gobius K (2010) Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 76(19):6514–6528

    Article  CAS  Google Scholar 

  153. Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E. coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108(6):1372–1382

    Article  CAS  Google Scholar 

  154. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12(5):553–558

    Article  CAS  Google Scholar 

  155. Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81(6):2135–2143

    Article  CAS  Google Scholar 

  156. Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res 11(3):263–272

    Article  CAS  Google Scholar 

  157. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13(6):656–665

    Article  CAS  Google Scholar 

  158. Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci 111(47):16967–16972

    Article  CAS  Google Scholar 

  159. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  160. Varman A, Yu Y, You L, Tang Y (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Factories 12(1):117

    Article  CAS  Google Scholar 

  161. Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1(3):207–210

    Article  CAS  Google Scholar 

  162. Feng X, Tang Y, Dolan KD (2014) Construction of a parsimonious kinetic model to capture microbial dynamics via parameter estimation. Inverse Probl Sci Eng 22(2):309–324

    Article  CAS  Google Scholar 

  163. Xiao Y, Feng X, Varman AM, He L, Yu H, Tang YJ (2012) Kinetic modeling and isotopic investigation of isobutanol fermentation by two engineered Escherichia coli strains. Ind Eng Chem Res 51(49):15855–15863

    Article  CAS  Google Scholar 

  164. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148(4):1003–1013

    Article  CAS  Google Scholar 

  165. Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11(2):180–186

    Article  CAS  Google Scholar 

  166. Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70(12):7277–7287

    Article  CAS  Google Scholar 

  167. Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Factories 7(1):8

    Article  CAS  Google Scholar 

  168. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70(1):229–239

    Article  CAS  Google Scholar 

  169. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68(12):5843–5859

    Article  CAS  Google Scholar 

  170. Leighty RW, Antoniewicz MR (2013) COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis. Metab Eng 20:49–55

    Article  CAS  Google Scholar 

  171. Crown SB, Long CP, Antoniewicz MR (2015) Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab Eng 28:151–158

    Article  CAS  Google Scholar 

  172. Leighty RW, Antoniewicz MR (2012) Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab Eng 14(5):533–541

    Article  CAS  Google Scholar 

  173. Crown SB, Antoniewicz MR (2013) Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies. Metab Eng 16:21–32

    Article  CAS  Google Scholar 

  174. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3(3):265–283

    Article  CAS  Google Scholar 

  175. Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38(suppl 2):W144–W149

    Article  CAS  Google Scholar 

  176. Srour O, Young JD, Eldar YC (2011) Fluxomers: a new approach for 13C metabolic flux analysis. BMC Syst Biol 5:129–129

    Article  CAS  Google Scholar 

  177. Kajihata S, Furusawa C, Matsuda F, Shimizu H (2014) OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis. Biomed Res Int 2014:10

    Article  Google Scholar 

  178. Sokol S, Millard P, Portais J-C (2012) influx_s: increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments. Bioinformatics 28(5):687–693

    Article  CAS  Google Scholar 

  179. Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451

    Article  CAS  Google Scholar 

  180. Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    Article  Google Scholar 

  181. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  182. Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Factories 11:57–57

    Article  CAS  Google Scholar 

  183. Hayakawa K, Matsuda F, Shimizu H (2016) Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-l-methionine production. AMB Express 6(1):38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Herbert Huttanus in Virginia Tech for improving the language of the chapter. This study was supported by start-up fund (#175323) from Virginia Tech and Junior Faculty Award from Institute for Critical Technology and Applied Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guo, W., Sheng, J., Feng, X. (2017). Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2017_2

Download citation

Publish with us

Policies and ethics