Skip to main content

Abstract

Process analytical technology (PAT), the regulatory initiative for incorporating quality in pharmaceutical manufacturing, is an area of intense research and interest. If PAT is effectively applied to bioprocesses, this can increase process understanding and control, and mitigate the risk from substandard drug products to both manufacturer and patient. To optimize the benefits of PAT, the entire PAT framework must be considered and each elements of PAT must be carefully selected, including sensor and analytical technology, data analysis techniques, control strategies and algorithms, and process optimization routines. This chapter discusses the current state of PAT in the biopharmaceutical industry, including several case studies demonstrating the degree of maturity of various PAT tools.

Hierarchy of QbD components

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ANN:

Artificial neural network

API:

Active pharmaceutical ingredient

CIP:

Cleaning in place

CPP:

Critical process parameter

CQA:

Critical quality attribute

EMA:

European Medicine Agency

FDA:

U.S. Food and Drug Administration

HPLC:

High-performance liquid chromatography

ICH:

International Council for Harmonisation

mAb:

Monoclonal antibody

MIR:

Mid-infrared

MOC:

Material of construction

MPC:

Model predictive control

MSPC:

Multivariate statistical process control

MVDA:

Multivariate data analysis

NIR:

Near infrared

OUR:

Oxygen uptake rate

PCV:

Packed cell volume

PHC:

Personalized healthcare

QbD:

Quality by Design

QC:

Quality control

ROI:

Return on investment

RQ:

Respiratory quotient

RVR:

Relevance vector regression

SVR:

Support vector regression

VCD:

Viable cell density

References

  1. Food and Drug Administration (2004) Guidance for industry guidance for industry PAT – a framework for innovative pharmaceutical development, manufacturing and quality assurance. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville

    Google Scholar 

  2. Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–6651

    Google Scholar 

  3. Jungbauer A, Peng J (2011) Continuous bioprocessing: an interview with Konstantin Konstantinov from Genzyme. Biotechnol J 6(12):1431–1434

    Google Scholar 

  4. Glassey J, Gernaey KV, Clemens C, Schulz TW, Oliveira R, Striedner G, Mandenius CF (2011) Process analytical technology (PAT) for biopharmaceuticals. Biotechnol J 6:369–377

    CAS  Google Scholar 

  5. Jose EJ, Folque F, Menezes JC, Werz S, Strauss U, Hakemeyer C (2011) Predicting Mab product yields from cultivation media components using near-infrared and 2D-fluorescence spectroscopies. Biotechnol Prog 27:1339–1346

    CAS  Google Scholar 

  6. Kirdar AO, Chen G, Weidner J, Rathore AS (2010) Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic protein. Biotechnol Prog 26(2):527–531

    CAS  Google Scholar 

  7. Lee HW, Christie A, Liu JJ, Yoon S (2012) Estimation of raw material performance in mammalian cell culture using near infrared spectra combined with chemometrics approaches. Biotechnol Prog 28(3):824–832

    CAS  Google Scholar 

  8. Hakemeyer C, Strauss U, Werz S, Folque F, Menezes JC (2013) Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: aged media decreases cell growth. Biotechnol J 8(7):835–846

    CAS  Google Scholar 

  9. Prajapati P, Solanki R, Modi V, Basuri T (2016) A brief review on NIR spectroscopy and its pharmaceutical applications. IJPCA 3(3):117–123

    Google Scholar 

  10. Trunfio N, Lee H, Starkey J, Agarabi C, Liu J, Yoon S (2017) Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics. Biotechnol Prog. doi:10.1002/btpr.2480

  11. Calvalhal AV, Saucedo VM (2012) Process analytical technology advances and applications in recombinant protein cell culture processes. In: Undey C, Low D, Menezes JC, Koch M (eds) PAT applied in biopharmaceutical process development and manufacturing. CRC Press, Boca Raton, pp 93–126

    Google Scholar 

  12. Cervera AE, Petersen N, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Prog 25:1561–1581

    CAS  Google Scholar 

  13. Sellick CA, Hansen R, Jarvis RM, Maqsood AR, Stephens GM, Dickson AJ, Goodacre R (2010) Rapid monitoring of recombinant antibody production by mammalian cell cultures using Fourier transform infrared spectroscopy and chemometrics. Biotechnol Bioeng 106:432–442

    CAS  Google Scholar 

  14. Saucedo V, Milligan M, Lewin-Koh N, Coleman D, Wolk B, Larson T, Arroyo A (2009) Practical issues implementing an in-situ NIR for real time monitoring of cell culture bioreactors. In: ACS annual conference, Washington, DC

    Google Scholar 

  15. Clavaud M, Roggo Y, Von Daeniken R, Liebler A, Schwabe JO (2012) Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Talanta 90:12–21

    Google Scholar 

  16. Hakemeyer C, Strauss U, Werz S, Jose GD, Folque F, Menezes JC (2012) At-line NIR spectroscopy as effective PAT monitoring technique in Mab cultivations during process development and manufacturing. Talanta 90:12–21

    CAS  Google Scholar 

  17. Henriques JG, Buziol S, Stocker E, Voogd A, Menezes JC (2009) Monitoring mammalian cell cultivations for monoclonal antibody production using near-infrared spectroscopy. Adv Biochem Eng Biotechnol 116:73–97

    CAS  Google Scholar 

  18. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    CAS  Google Scholar 

  19. Ashton L, Hogwood CEM, Tait AS, Kuligowski J, Smales CM, Bracewell DG, Dickson AJ, Goodacre R (2015) UV resonance Raman spectroscopy: a process analytical tool for host cell DNA and RNA dynamics in mammalian cell lines. J Chem Technol Biotechnol 90(2):237–243

    CAS  Google Scholar 

  20. Ashton L, Xu Y, Brewster VL, Cowcher DP, Sellick CA, Dickson AJ, Stephens GM, Goodacre R (2013) The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst 138(22):6977–6985

    CAS  Google Scholar 

  21. Berry BN, Dobrowsky TM, Timson RC, Kshirsagar R, Ryll T, Wiltberger K (2015) Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol Prog. doi:10.1002/btpr.2205

  22. Sun L, Hsiung C, Pederson CG, Zou P, Smith V, von Gunten M, O’Brien NA (2016) Pharmaceutical raw material identification using miniature near-infrared (MicroNIR) spectroscopy and supervised pattern recognition using support vector machine. Appl Spectrosc 70(5):816–825

    CAS  PubMed Central  Google Scholar 

  23. Carvell J, Graham L, Downey B (2013) Insights into monitoring changes in the viable cell density and cell physiology using scanning, multi-frequency dielectric spectroscopy. 23rd ESACT meeting: better cells for better health. BMC Proc 7(6):4

    Google Scholar 

  24. Downey BJ, Graham LJ, Breit JF, Glutting NK (2014) A novel approach for using dielectric spectroscopy to predict viable cell volume (VCV) in early process development. Biotechnol Prog 30(2):479–487

    CAS  Google Scholar 

  25. Druzinec D, Weiss K, Elseberg C, Salzig D, Kraume M, Pörtner R, Czermak P (2014) Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM). Methods Mol Biol 1104:313–341

    CAS  Google Scholar 

  26. Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29(4):391–401

    CAS  Google Scholar 

  27. Cannizzaro C, Gügerli R, Marison I, Stockar UV (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84(5):597–610

    CAS  Google Scholar 

  28. Hantelmann K, Kollecker M, Hull D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121:410–417

    CAS  Google Scholar 

  29. Schwab K, Hesse F (2013) 2D fluorescence spectroscopy for real-time aggregation monitoring in upstream processing. 23rd ESACT meeting: better cells for better health. BMC Proc 7(6):94

    Google Scholar 

  30. Alvarez A, Simutis R (2004) Application of Kalman filter algorithm in GMC control strategy for fed-batch cultivation process. Inf Technol Ir Valdymas 1:7–12

    Google Scholar 

  31. de Assisa AJ, Filho RM (2000) Soft sensors development for on-line bioreactor state estimation. Comput Chem Eng 24:1099–1103

    Google Scholar 

  32. Jenzsch M, Simutis R, Eisbrenner G, Stückrath I, Lübbert A (2006) Estimation of biomass concentrations in fermentation processes for recombinant protein production. Bioprocess Biosyst Eng 29:19–27

    CAS  Google Scholar 

  33. Luttmann R, Bracewell DG, Cornelissen G (2012) Soft sensors in bioprocessing: a status report and recommendations. Biotechnol J 7(8):1040–1048

    CAS  Google Scholar 

  34. Montague G, Morris J (1994) Neural-network contributions in biotechnology. Trends Biotechnol 12:312–324

    CAS  Google Scholar 

  35. Sundström H, Enfors SO (2008) Software sensors for fermentation processes. Bioprocess Biosyst Eng 31:145–152

    Google Scholar 

  36. Clementschitsch F, Bayer K (2006) Improvements of bioprocess monitoring: development of novel concepts. Microb Cell Factories 5:19

    Google Scholar 

  37. Sandor M, Rudinger F, Solle D, Bienert R, Grimm C, Gross S (2013) NIR-spectroscopy for bioprocess monitoring and control. 23rd ESACT meeting: better cells for better health. BMC Proc 7(6):29

    Google Scholar 

  38. Waarvik TL (1987) US Patent 4683207A, 28 Jul 1987

    Google Scholar 

  39. Barringer GE Jr (2010) US Patent 2010/0047122, 25 Feb 2010

    Google Scholar 

  40. Rapoport P, Wang SH, Pascoe D (2006) Implementation of online amino acid analysis for medium and feed optimization in mammalian cell culture. In: AIChE annual meeting, Paper 58c, Nov 2006, San Francisco, CA

    Google Scholar 

  41. St Amand MM, Ogunnaike BA, Robinson AS (2014) Development of at-line assay to monitor charge variants of MAbs during production. Biotechnol Prog 30(1):249–2255

    Google Scholar 

  42. Behrendt U, Koch S, Gooch DD, Steegmans U, Comer MJ (1994) Mass spectrometry: a tool for on-line monitoring of animal cell cultures. Cytotechnology 14:157–162

    CAS  Google Scholar 

  43. Schmidberger T, Huber R (2013) Advanced off-gas measurement using proton transfer reaction mass spectrometry to predict cell culture. 23rd ESACT meeting: better cells for better health. BMC Proc 7(6):14

    Google Scholar 

  44. Paalme RT, Tiisma K, Kahru A, Vanatalu K, Vilu R (1990) Glucose-limited fed-batch cultivation of Escherichia coli with computer-controlled fixed growth. Biotechnol Bioeng 35:312–319

    CAS  Google Scholar 

  45. Zupke C, Brady LJ, Slade PG, Clark P, Caspary RG, Livingston B, Taylor L, Bigham K, Morris AE, Bailey RW (2015) Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels. Biotechnol Prog 31(5):1433–1441

    CAS  Google Scholar 

  46. Aehle M, Bork K, Schaepe S, Kuprijanov A, Horstkorte R, Simutis R, Lübbert A (2012) Increasing batch-to-batch reproducibility of CHO-cell cultures using a model predictive control approach. Cytotechnology 64:623–634

    CAS  PubMed Central  Google Scholar 

  47. Aehle M, Schaepe S, Kuprijanov A, Simutis R, Lübbert A (2011) Simple and efficient control of CHO cell cultures. J Biotechnol 153:56–61

    CAS  Google Scholar 

  48. Craven S, Whelan J, Glennon B (2014) Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control 24:344–357

    CAS  Google Scholar 

  49. Gnoth S, Kuprijanov A, Simutis R, Lubbert A (2010) Simple adaptive pH control in bioreactors using gain-scheduling methods. Appl Microbiol Biotechnol 85(4):955–964

    CAS  Google Scholar 

  50. Jenzsch M, Gnoth S, Kleinschmidt M, Simutis R, Lübbert A (2007) Improving the batch-to-batch reproducibility of microbial cultures during recombinant protein production by regulation of the total carbon dioxide production. J Biotechnol 128:858–867

    CAS  Google Scholar 

  51. Kuprijanov A, Schaepe S, Aehle M, Simutis R, Lübbert A (2012) Improving cultivation processes for recombinant protein production. Bioprocess Biosyst Eng 35(3):333–340

    CAS  Google Scholar 

  52. Schalk R, Geoerg D, Staubach J, Raedle M, Methner FJ, Beuermann T (2017) Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations. J Biosci Bioeng 123(5):651–657

    CAS  Google Scholar 

  53. Schuler MM, Marison IW (2012) Real-time monitoring and control of microbial bioprocesses with focus on the specific growth rate: current state and perspectives. Appl Microbiol Biotechnol 94(6):1469–1482

    CAS  Google Scholar 

  54. Fahrner RL, Lester PM, Blank GS, Reifsnyder DH (1998) Real-time control of purified product collection during chromatography of recombinant human insulin-like growth factor-I using an on-line assay. J Chromatogr A 827(1):37–43

    CAS  Google Scholar 

  55. Fahrner RL, Blank GS (1999) Real-time control of antibody loading during protein A affinity chromatography using an on-line assay. J Chromatogr A 849(1):191–196

    CAS  Google Scholar 

  56. Rathore AS, Yu M, Yeboah S, Sharma A (2008) Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography. Biotechnol Bioeng 100(2):306–316

    CAS  Google Scholar 

  57. Brower KP, Ryakala VK, Bird R, Godawat R, Riske FJ, Konstantinov K, Warikoo V, Gamble J (2014) Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development. Biotechnol Prog 30(3):708–717

    CAS  Google Scholar 

  58. Barackman J, Prado I, Karunatilake C, Furuya K (2004) Evaluation of on-line high-performance size-exclusion chromatography, differential refractometry, and multi-angle laser light scattering analysis for the monitoring of the oligomeric state of human immunodeficiency virus vaccine protein antigen. J Chromatogr A 1043(1):57–64

    CAS  Google Scholar 

  59. Watson DS, Kerchner KR, Gant SS, Pedersen JW, Hamburger JB, Ortigosa AD, Potgieter TI (2015) At-line process analytical technology (PAT) for more efficient scale up of biopharmaceutical microfiltration unit operations. Biotechnol Prog. doi:10.1002/btpr.2193

  60. Rathore AS, Mittal S, Lute S, Brorson K (2012) Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin. Biotechnol Prog 28(5):1308–1314

    CAS  Google Scholar 

  61. Bork C, Holdridge S, Walter M, Fallon E, Pohlscheidt M (2014) Online integrity monitoring in the protein A step of mAb production processes – increasing reliability and process robustness. Biotechnol Prog 30(2):383–390

    CAS  Google Scholar 

  62. Crone C (2013) Cleaning validation: a timely solution for improving quality and containing cost. Pharm Eng 33(6):52–58

    Google Scholar 

  63. Jawadekar M (2012) A novel tool for cleaning validation. In: Light induced fluorescence technology, Contract Pharma, 30 May 2012

    Google Scholar 

  64. Lyndgaard CB, Rasmussen MA, Engelsen SB, Thaysen D, van den Berg F (2014) Moving from recipe-driven to measurement-based cleaning procedures: monitoring the cleaning-in-place process of whey filtration units by ultraviolet spectroscopy and chemometrics. J Food Eng 126:82–88

    CAS  Google Scholar 

  65. Schaepe S, Kuprijanov A, Sieblist C, Jenzsch M, Simutis R, Lübbert A (2014) Current advances in tools improving bioreactor performance. Curr Biotechnol 3(4):133–144

    CAS  Google Scholar 

  66. Schaepe S, Jenzsch M, Kuprijanov A, Simutis R, Lübbert A (2013) Batch-to-batch reproducibility of fermentation processes by robust operational design and control. Pharm Bioprocess 1(3):297–307

    Google Scholar 

  67. Wang J, Yu T, Jin C (2006) On-line estimation of biomass in fermentation process using support vector machine. Chin J Chem Eng 14(3):383–388

    CAS  Google Scholar 

  68. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  69. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    Google Scholar 

  70. Ji J, Wang HQ, Chen K, Liu Y, Zhang N, Yan JJ (2012) Recursive weighted kernel regression for semi-supervised soft-sensing modeling of fed-batch processes. J Taiwan Inst Chem Eng 43(1):67–76

    CAS  Google Scholar 

  71. Tetko IV, Livingstone DJ, Luik AI (1995) Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci 35(5):826–833

    CAS  Google Scholar 

  72. Desai K, Badhe Y, Tambe SS, Kulkarni BD (2006) Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem Eng J 27(3):225–239

    CAS  Google Scholar 

  73. Aehle M, Simutis R, Lübbert A (2010) Comparison of viable cell concentration estimation methods for a mammalian cell cultivation process. Cytotechnology 62(5):413–422

    CAS  PubMed Central  Google Scholar 

  74. Liu GH, Zhou DW, Xu HX, Mei CL (2010) Model optimization of SVM for a fermentation soft sensor. Expert Syst Appl 37(4):2708–2713

    Google Scholar 

  75. Pohlscheidt M, Charaniya S, Bork C, Jenzsch M, Nötzel T, Lübbert A (2013) Bioprocess and fermentation monitoring. In: Flickinger MC (ed) The encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology1st edn. Wiley, New York, pp 1471–1491

    Google Scholar 

  76. Chang Y, Bork C, Thömmes J (2005) Transition analysis of process chromatography data for real-time monitoring of column quality and performance. In: International forum for process analytical technology, Arlington, VA

    Google Scholar 

  77. Larson T, Davis J, Lam H, Cacia J (2003) Use of process data to assess chromatographic performance in production scale protein purification columns. Biotechnol Prog 19:485–492

    CAS  Google Scholar 

  78. Miller MJ (2012) Rapid micro methods and EMA’s post approval change management protocol. Eur Pharm Rev 17(2):65–67

    Google Scholar 

  79. Riley B (2011) A regulators view of rapid microbiology methods. Eur Pharm Rev 16(5):59–61

    Google Scholar 

  80. Parveen S, Kaur S, David SAW, Kenney JL, McCormick WM, Gupta RK (2011) Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. Vaccine 29:8012–8023

    CAS  Google Scholar 

  81. Denoya C, Reyes J, Ganatra M, Eshete D (2011) Rapid sterility testing using ATP bioluminescence based Pallchek™ rapid microbiology system. In: Moldenhauer O (ed) Rapid sterility testing. PDA and DHI Publishing, Bethesda, pp 433–461

    Google Scholar 

  82. Miller MJ, Lindsay H, Valverde-Ventura R, O’onner MJ (2009) Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part I. Review of the technology and comparative studies with conventional methods. PDA J Pharm Sci Technol 63(3):245–258

    CAS  Google Scholar 

  83. EMA (2012) Questions and answers on post approval change management protocols. Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency, EMA/CHMP/CVMP/QWP/586330/2010

    Google Scholar 

  84. Food and Drug Administration (2012) Amendments to sterility test requirements for biological products final rule. 21 CFR Parts 600, 610, and 680 [Docket No. FDA–2011–N–0080] 77(86):26162–26175

    Google Scholar 

  85. Gray JC, Morandell D, Gapp G, Le Goff N, Neuhaus G, Staerk A (2011) Identification of microorganisms after milliflex rapid detection - a possibility to identify nonsterile findings in the milliflex rapid sterility test. PDA J Pharm Sci Technol 65(1):42–54

    CAS  Google Scholar 

  86. Gray JC, Staerk A, Berchtold M, Hecker W, Neuhaus G, Wirth A (2010) Growth-promoting properties of different solid nutrient media evaluated with stressed and unstressed micro-organisms: prestudy for the validation of a rapid sterility test. PDA J Pharm Sci Technol 64(3):249–263

    Google Scholar 

  87. Kamat MS, Lodder RA, DeLuca PP (1989) Near infra-red spectroscopic determination of residual moisture in lyophilized sucrose through intact glass vials. Pharm Res 6(11):961–965

    CAS  Google Scholar 

  88. Findlay WP, Peck GR, Morris KR (2005) Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J Pharm Sci 94:604–612

    CAS  Google Scholar 

  89. Rantanen J, Antikainen O, Mannermaa JP, Yliruusi J (2000) Use of the near-infrared reflectance method for measurement of moisture content during granulation. Pharm Dev Technol 5:209–217

    CAS  Google Scholar 

  90. Zhou X, Hines P, Borer MW (1998) Moisture determination in hygroscopic drug substances by near infrared spectroscopy. J Pharm Biomed Anal 17(2):219–225

    CAS  Google Scholar 

  91. Berntsson O, Zackrisson G, Ostling G (1997) Determination of moisture in hard gelatin capsules using near-infrared spectroscopy: applications to at-line process control of pharmaceutics. J Pharm Biomed Anal 15:895–900

    CAS  Google Scholar 

  92. Buice RGJ, Gold TB, Lodder RA, Digenis GA (1995) Determination of moisture in intact gelatin capsules by near-infrared spectrophotometry. Pharm Res 12:161–163

    CAS  Google Scholar 

  93. Broad NW, Jee RD, Moffat AC, Eaves MJ, Mann WC, Dziki W (2000) Non-invasive determination of ethanol, propylene glycol and water in a multi-component pharmaceutical oral liquid by direct measurement through amber plastic bottles using Fourier transform near-infrared spectroscopy. Analyst 125(11):2054–2058

    CAS  Google Scholar 

  94. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44:683–700

    CAS  Google Scholar 

  95. Lin TP, Hsu CC (2002) Determination of residual moisture in freeze-dried protein pharmaceuticals using a rapid and noninvasive method: near infrared spectroscopy. PDA J Pharm Sci Technol 56:196–205

    Google Scholar 

  96. Cogdill RP, Anderson CA, Delgado M, Chisholm R, Bolton R, Herkert T, Afnan AM, Drennen JK (2005) Process analytical technology case study: part I. Feasibility studies for quantitative near-infrared method development. AAPS PharmSciTech 6(2):262–272

    Google Scholar 

  97. Cogdill RP, Anderson CA, Delgado M, Chisholm R, Bolton R, Herkert T, Afnan AM, Drennen JK (2005) Process analytical technology case study: part II. Development and validation of quantitative near-infrared calibrations in support of a process analytical technology application for real-time release. AAPS PharmSciTech 6(2):273–283

    Google Scholar 

  98. Shanley A (2012) The pulse of pharmaceutical manufacturing. Pharm Manufac, 4 Apr 2012

    Google Scholar 

  99. González-Martínez JM, Folch-Fortuny A, Llaneras F, Tortajada M, Picó J, Ferrer A (2014) Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemom Intel Lab Syst 134:89–99

    Google Scholar 

  100. Then-Kania A (2011) Postapproval CMC changes in the United States with a focus on biopharmaceuticals – current status and an outlook in the pharmaceutical development. Master thesis, University of Bonn

    Google Scholar 

  101. Moore CVM (2013) Multivariate tools for modern pharmaceutical control – FDA perspective. In: IFPAC annual meeting, 22 Jan 2013

    Google Scholar 

Download references

Acknowledgements

Part of the explorations presented here was a collaborative work together with 4Tune Engineering Ltd., and YourEncore. We gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Jenzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jenzsch, M., Bell, C., Buziol, S., Kepert, F., Wegele, H., Hakemeyer, C. (2017). Trends in Process Analytical Technology: Present State in Bioprocessing. In: Kiss, B., Gottschalk, U., Pohlscheidt, M. (eds) New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Advances in Biochemical Engineering/Biotechnology, vol 165. Springer, Cham. https://doi.org/10.1007/10_2017_18

Download citation

Publish with us

Policies and ethics