Skip to main content

Mixed Culture Biocathodes for Production of Hydrogen, Methane, and Carboxylates

  • Chapter
  • First Online:
Bioelectrosynthesis

Abstract

Formation of hydrogen, methane, and organics at biocathodes is an attractive new application of bioelectrochemical systems (BESs). Using mixed cultures, these products can be formed at certain cathode potentials using specific operating conditions, of which pH is important. Thermodynamically, the reduction of CO2 to methane is the most favorable reaction, followed by reduction of CO2 to acetate and ethanol, and hydrogen. In practice, however, the cathode potential at which these reactions occur is more negative, meaning that more energy is required to drive the reaction. Therefore, hydrogen is often found as a second product or intermediate in the conversion of CO2 to both methane and carboxylates. In this chapter we summarize the inocula used for biocathode processes and discuss the achieved conversion rates and cathode potentials for formation of hydrogen, methane, and carboxylates. Although this overview reveals that BESs offer new opportunities for the bioproduction of different compounds, there are still challenges that need to be overcome before these systems can be applied on a larger scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bond DR, Lovley DR (2003). Appl Environ Microbiol 69:1548ā€“1555

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Logan BE, Regan JM (2006). Environ Sci Technol 40:5172ā€“5180

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008). Environ Sci Technol 42:8630ā€“8640

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007). Environ Sci Technol 41:7564ā€“7569

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN (2010). Environ Sci Technol 44:7151ā€“7156

    PubMedĀ  Google ScholarĀ 

  6. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007). Environ Sci Technol 41:3354ā€“3360

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Jeremiasse AW, Hamelers HVM, Buisman CJN (2010). Bioelectrochemistry 78:39ā€“43

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Cheng S, Xing D, Call DF, Logan BE (2009). Environ Sci Technol 43:3953ā€“3958

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Nevin KP, Woodard TL, Franks AE (2010). MBio 1:e00103ā€“e00110

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, Steinbusch KJJ, Sleutels THJA, Hamelers HVM, Buisman CJN (2013). ACS Sustain Chem Eng 1:513ā€“518

    Google ScholarĀ 

  11. Van Eerten-Jansen MCAA, Ter Heijne A, Buisman CJN, Hamelers HVM (2012). Int J Energy Res 36:809ā€“819

    Google ScholarĀ 

  12. Molenaar SD, Mol AR, Sleutels THJA, ter Heijne A, Buisman CJN (2016). Environ Sci Technol Lett 3:144ā€“149

    CASĀ  Google ScholarĀ 

  13. Wagemann K, Tippkƶtter N (2017) Biorefineries: a short introduction. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_4

    Google ScholarĀ 

  14. Rais D, Zibek S (2017) Biotechnological and biochemical utilization of lignin. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_6

    Google ScholarĀ 

  15. Rabaey K, Rozendal RA (2010). Nat Rev Microbiol 8:706ā€“716

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Hegner R, Gutensohn MF, Koch C, Harnisch F (2016). ChemSusChem 10:958ā€“967

    Google ScholarĀ 

  17. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010). Environ Sci Technol 44:513ā€“517

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Logan BE, Hamelers B, Rozendal R, Schrƶder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006). Environ Sci Technol 40:5181ā€“5192

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Hamelers HVM, Ter Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010). Appl Microbiol Biotechnol 85:1673ā€“1685

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Thauer RK, Jungermann K, Decker K (1977). Bacteriol Rev 41:100ā€“180

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001). FEMS Microbiol Ecol 38:33ā€“41

    CASĀ  Google ScholarĀ 

  22. Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN, Int J (2009). Hydrogen Energy 34:3612ā€“3620 Refs. [20] and [121], [21] and [47], [30] and [85], [30] and [60], [37] and [96] were identical, hence the latter has been removed from the reference list and subsequent references have been renumbered. Please check.

    Google ScholarĀ 

  23. Bajracharya S, Ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015). Bioresour Technol 195:14ā€“24

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Dolfing J (2014). ISME J 8:4ā€“5

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Van Eerten-Jansen MCAA, Veldhoen AB, Plugge CM, Stams AJM, Buisman CJN, Ter Heijne A (2013). Archaea 2013:481784

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Jourdin L, Freguia S, Donose BC, Keller J (2015). Bioelectrochemistry 102:56ā€“63

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, BaƱeras L, Balaguer MD, Colprim J (2014). Int J Hydrogen Energy 39:1297ā€“1305

    CASĀ  Google ScholarĀ 

  28. Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012). Biotechnol Bioeng 109:657ā€“664

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008). Environ Sci Technol 42:629ā€“634

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013). Int J Hydrogen Energy 38:15638ā€“15645

    CASĀ  Google ScholarĀ 

  31. Sleutels THJA, Ter Heijne A, Buisman CJN, Hamelers HVM (2013). Int J Hydrogen Energy 38:7201ā€“7208

    CASĀ  Google ScholarĀ 

  32. Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011). Bioresour Technol 102:3193ā€“3199

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Clauwaert P, Verstraete W (2009). Appl Microbiol Biotechnol 82:829ā€“836

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Villano M, Scardala S, Aulenta F, Majone M (2013). Bioresour Technol 130:366ā€“371

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014). ACS Sustain Chem Eng 2:910ā€“917

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Balaguer MD, Colprim J (2015). RSC Adv 5:52243ā€“52251

    CASĀ  Google ScholarĀ 

  37. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015). Environ Sci Technol 49:1225ā€“1232

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE (2014). Environ Sci Technol 48:8911ā€“8918

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Rader GK, Logan BE (2010). Int J Hydrogen Energy 35:8848ā€“8854

    CASĀ  Google ScholarĀ 

  40. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010). Bioresour Technol 101:3085ā€“3090

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012). Appl Environ Microbiol 78:8412ā€“8420

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J (2016). J Chem Technol Biotechnol 91:921ā€“927

    CASĀ  Google ScholarĀ 

  43. Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014). J Mater Chem A 2:13093

    CASĀ  Google ScholarĀ 

  44. Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013). Int J Hydrogen Energy 38:3497ā€“3502

    CASĀ  Google ScholarĀ 

  45. Xafenias N, Mapelli V (2014). Int J Hydrogen Energy 39:21864ā€“21875

    CASĀ  Google ScholarĀ 

  46. Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB (2016). Environ Sci Pollut Res 23:22292ā€“22308

    CASĀ  Google ScholarĀ 

  47. Patil SA, Arends JBA, Vanwonterghem I, Van Meerbergen J, Guo K, Tyson GW, Rabaey K (2015). Environ Sci Technol 49:8833ā€“8843

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013). Environ Sci Technol 47:6023ā€“6029

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Jourdin L, Freguia S, Flexer V, Keller J (2016). Environ Sci Technol 50:1982ā€“1989

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. LaBelle EV, Marshall CW, Gilbert JA, May HD (2014). PLoS One 9:1ā€“10

    Google ScholarĀ 

  51. Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, Chen J, Romano M, Wallace GG, Keller J (2015). Environ Sci Technol 49:13566ā€“13574

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2016). ChemElectroChem 3:581ā€“591

    CASĀ  Google ScholarĀ 

  53. GaniguĆ© R, Puig S, Batlle-Vilanova P, Dolors Balaguer M, Colprim J (2015). Chem Commun 51:3235ā€“3238

    Google ScholarĀ 

  54. Lu L, Ren NQ, Zhao X, Wang HA, Wu D, Xing DF (2011). Energy Environ Sci 4:1329ā€“1336

    CASĀ  Google ScholarĀ 

  55. Ramachandran R (1998). Int J Hydrogen Energy 23:593ā€“598

    CASĀ  Google ScholarĀ 

  56. Eklund G, Vonkrusenstierna O (1983). Int J Hydrogen Energy 8:463ā€“470

    CASĀ  Google ScholarĀ 

  57. Gielen D, Simbolotti G (2005) Prospects for hydrogen and fuel cells. IEA, Paris, pp 1ā€“256

    Google ScholarĀ 

  58. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011). Appl Microbiol Biotechnol 89:2053ā€“2063

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006). Int J Hydrogen Energy 31:1632ā€“1640

    CASĀ  Google ScholarĀ 

  60. Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN (2010). Int J Hydrogen Energy 35:12716ā€“12723

    CASĀ  Google ScholarĀ 

  61. Kundu A, Sahu JN, Redzwan G, Hashim MA (2013). Int J Hydrogen Energy 38:1745ā€“1757

    CASĀ  Google ScholarĀ 

  62. Munoz LD, Erable B, Etcheverry L, Riess J, BassĆ©guy R, Bergel A (2010). Electrochem Commun 12:183ā€“186

    CASĀ  Google ScholarĀ 

  63. De Silva MuƱoz L, Bergel A, FĆ©ron D, BassĆ©guy R (2010). Int J Hydrogen Energy 35:8561ā€“8568

    Google ScholarĀ 

  64. Jeremiasse AW, Hamelers HVM, Kleijn JM, Buisman CJN (2009). Environ Sci Technol 43:6882ā€“6887

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Popat SC, Ki D, Young MN, Rittmann BE, Torres CI (2014). ChemElectroChem 1:1909ā€“1915

    CASĀ  Google ScholarĀ 

  66. Call DF, Merrill MD, Logan BE (2009). Environ Sci Technol 43:2179ā€“2183

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Selembo PA, Merrill MD, Logan BE (2009). J Power Sources 190:271ā€“278

    CASĀ  Google ScholarĀ 

  68. Huang YX, Liu XW, Sun XF, Sheng GP, Zhang YY, Yan GM, Wang SG, Xu AW, Yu HQ (2011). Int J Hydrogen Energy 36:2773ā€“2776

    CASĀ  Google ScholarĀ 

  69. Hu H, Fan Y, Liu H (2009). Int J Hydrogen Energy 34:8535ā€“8542

    CASĀ  Google ScholarĀ 

  70. Ribot-Llobet E, Nam JY, Tokash JC, Guisasola A, Logan BE (2013). Int J Hydrogen Energy 38:2951ā€“2956

    CASĀ  Google ScholarĀ 

  71. Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN, Int J (2009). Hydrogen Energy 34:9655ā€“9661

    CASĀ  Google ScholarĀ 

  72. Sleutels THJA, Hamelers HVM, Buisman CJN (2011). Bioresour Technol 102:399ā€“403

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Tokash JC, Logan BE (2011). Int J Hydrogen Energy 36:9439ā€“9445

    CASĀ  Google ScholarĀ 

  74. Zhang Y, Merrill MD, Logan BE (2010). Int J Hydrogen Energy 35:12020ā€“12028

    CASĀ  Google ScholarĀ 

  75. Brown RK, Schmidt UC, Harnisch F, Schrƶder U (2017). J Power Sources 356:473ā€“483

    CASĀ  Google ScholarĀ 

  76. Manuel M-F, Neburchilov V, Wang H, Guiot SR, Tartakovsky B (2010). J Power Sources 195:5514ā€“5519

    CASĀ  Google ScholarĀ 

  77. Hu H, Fan Y, Liu H (2010). Int J Hydrogen Energy 35:3227ā€“3233

    CASĀ  Google ScholarĀ 

  78. Geelhoed JS, Stams AJM (2010). Environ Sci Technol 45:815ā€“820

    PubMedĀ  Google ScholarĀ 

  79. Lojou E, Durand MC, Dolla A, Bianco P (2002). Electroanalysis 14:913ā€“922

    CASĀ  Google ScholarĀ 

  80. Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012). ISME J 6:863ā€“874

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Vignais PM, Colbeau A (2004). Curr Issues Mol Biol 6:159ā€“188

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Croese E, Jeremiasse AW, Marshall IPG, Spormann AM, Euverink GJW, Geelhoed JS, Stams AJM, Plugge CM (2014). Enzym Microb Technol 61ā€“62:67ā€“75

    Google ScholarĀ 

  83. Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016). Trends Biotechnol 34:879ā€“894

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979). Microbiol Rev 43:260ā€“296

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Zinder SH, Sowers KR, Ferry JG (1985). Int J Syst Bacteriol 35:522ā€“523

    Google ScholarĀ 

  86. Lomans BP, Maas R, Luderer R, Den Camp HJMOP, Pol A, Van Der Drift C, Vogels GD (1999). Appl Environ Microbiol 65:3641ā€“3650

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008). Appl Microbiol Biotechnol 79:901ā€“913

    CASĀ  PubMedĀ  Google ScholarĀ 

  88. Pham TH, Aelterman P, Verstraete W (2009). Trends Biotechnol 27:168ā€“178

    CASĀ  PubMedĀ  Google ScholarĀ 

  89. Jiang Y, Su M, Li D (2014). Appl Biochem Biotechnol 172:2720ā€“2731

    CASĀ  PubMedĀ  Google ScholarĀ 

  90. Siegert M, Yates MD, Spormann AM, Logan BE (2015). ACS Sustain Chem Eng 3:1668ā€“1676

    CASĀ  Google ScholarĀ 

  91. van Eerten-Jansen MCAA, Jansen NC, Plugge CM, de Wilde V, Buisman CJN, ter Heijne A (2014). J Chem Technol Biotechnol 90:963ā€“970

    Google ScholarĀ 

  92. Cheng KY, Ho G, Cord-Ruwisch R (2011). Environ Sci Technol 45:796ā€“802

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014). Electrochim Acta 140:191ā€“208

    CASĀ  Google ScholarĀ 

  94. Rouleau S et al (2017) RNA G-quadruplexes as key motifs of the transcriptome. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_8

    Google ScholarĀ 

  95. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011). Bioresour Technol 102:324ā€“333

    CASĀ  PubMedĀ  Google ScholarĀ 

  96. Deutzmann JS, Sahin M, Spormann AM (2015). MBio 6:1ā€“8

    CASĀ  Google ScholarĀ 

  97. Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014). ISME J 8:1673ā€“1681

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. Yates MD, Siegert M, Logan BE (2014). Int J Hydrogen Energy 39:16841ā€“16851

    CASĀ  Google ScholarĀ 

  99. Koch C, Kuchenbuch A, Kretzschmar J, Wedwitschka H, Liebetrau J, MĆ¼ller S, Harnisch F (2015). RSC Adv 5:31329ā€“31340

    CASĀ  Google ScholarĀ 

  100. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011). Trends Biotechnol 29:70ā€“78

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Holtzapple MT, Granda CB (2009). Appl Biochem Biotechnol 156:95ā€“106

    PubMedĀ  Google ScholarĀ 

  102. Schievano A, PepĆ© Sciarria T, Vanbroekoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D (2016). Trends Biotechnol 34:866ā€“878

    CASĀ  PubMedĀ  Google ScholarĀ 

  103. Moscoviz R, Toledo-AlarcĆ³n J, Trably E, Bernet N (2016). Trends Biotechnol 34:856ā€“865

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011). Appl Environ Microbiol 77:2882ā€“2886

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015). Energy Environ Sci 8:3731ā€“3744

    CASĀ  Google ScholarĀ 

  106. Jajesniak P, Ali HEMO, Wong TS (2014). J Bioprocess Biotech 4:155

    Google ScholarĀ 

  107. Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A (2011). Biotechnol Adv 29:949ā€“960

    CASĀ  PubMedĀ  Google ScholarĀ 

  108. RamiĆ³-Pujol S, GaniguĆ© R, BaƱeras L, Colprim J (2015). Process Biochem 50:1047ā€“1055

    Google ScholarĀ 

  109. Jones DT, Woods DR (1986). Microbiol Rev 50:484ā€“524

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  110. GaniguĆ© R, SĆ”nchez-Paredes P, BaƱeras L, Colprim J (2016). Front Microbiol 7:1ā€“11

    Google ScholarĀ 

  111. Abubackar HN, Veiga MC, Kennes C (2012). Bioresour Technol 114:518ā€“522

    CASĀ  PubMedĀ  Google ScholarĀ 

  112. Marshall CW, LaBelle EV, May HD (2013). Curr Opin Biotechnol 24:391ā€“397

    CASĀ  PubMedĀ  Google ScholarĀ 

  113. Puig S, GaniguĆ© R, Batlle-Vilanova P, Balaguer MD, BaƱeras L, Colprim J (2011). Bioresour Technol 102:4462ā€“4467

    CASĀ  PubMedĀ  Google ScholarĀ 

  114. Beese-Vasbender PF, Grote JP, Garrelfs J, Stratmann M, Mayrhofer KJJ (2015). Bioelectrochemistry 102:50ā€“55

    CASĀ  PubMedĀ  Google ScholarĀ 

  115. Pozo G, Jourdin L, Lu Y, Ledezma P, Keller J, Freguia S (2015). RSC Adv 5:89368ā€“89374

    CASĀ  Google ScholarĀ 

  116. De Tissera S et al (2017) Syngas biorefinery and syngas utilization. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_5

    Google ScholarĀ 

  117. Bagastyo AY, Radjenovic J, Mu Y, Rozendal RA, Batstone DJ, Rabaey K (2011). Water Res 45:4951ā€“4959

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Sleutels THJA, ter Heijne A, Kuntke P, Buisman CJN, Hamelers HVM (2017). Chemistry Select 2:3462ā€“3470. doi:10.1002/slct.201700064

    CASĀ  Google ScholarĀ 

  119. Ɩzilgen M (2017) How to decide on modeling details: risk and benefit assessment. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_9

    Google ScholarĀ 

  120. Kim JR, Cheng S, Oh S-E, Logan BE (2007). Environ Sci Technol 41:1004ā€“1009

    CASĀ  PubMedĀ  Google ScholarĀ 

  121. Rozendal RA, Sleutels THJA, Hamelers HVM, Buisman CJN (2008). Water Sci Technol 57:1757ā€“1762

    CASĀ  PubMedĀ  Google ScholarĀ 

  122. Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, PrĆ©voteau A, Rabaey K (2015). Environ Sci Technol Lett 2:325ā€“328

    CASĀ  Google ScholarĀ 

  123. Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, Strik DPBTB, Grootscholten TIM, Buisman CJN, Hamelers HVM (2016). Environ Sci Technol 50:2796ā€“2810

    CASĀ  PubMedĀ  Google ScholarĀ 

  124. Liu H, Grot S, Logan BE (2005). Environ Sci Technol 39:4317ā€“4320

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemiek ter Heijne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

ter Heijne, A., Geppert, F., Sleutels, T.H.J.A., Batlle-Vilanova, P., Liu, D., Puig, S. (2017). Mixed Culture Biocathodes for Production of Hydrogen, Methane, and Carboxylates. In: Harnisch, F., Holtmann, D. (eds) Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology, vol 167. Springer, Cham. https://doi.org/10.1007/10_2017_15

Download citation

Publish with us

Policies and ethics