Mixed Culture Biocathodes for Production of Hydrogen, Methane, and Carboxylates

  • Annemiek ter HeijneEmail author
  • Florian Geppert
  • Tom H. J. A. Sleutels
  • Pau Batlle-Vilanova
  • Dandan Liu
  • Sebastià Puig
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)


Formation of hydrogen, methane, and organics at biocathodes is an attractive new application of bioelectrochemical systems (BESs). Using mixed cultures, these products can be formed at certain cathode potentials using specific operating conditions, of which pH is important. Thermodynamically, the reduction of CO2 to methane is the most favorable reaction, followed by reduction of CO2 to acetate and ethanol, and hydrogen. In practice, however, the cathode potential at which these reactions occur is more negative, meaning that more energy is required to drive the reaction. Therefore, hydrogen is often found as a second product or intermediate in the conversion of CO2 to both methane and carboxylates. In this chapter we summarize the inocula used for biocathode processes and discuss the achieved conversion rates and cathode potentials for formation of hydrogen, methane, and carboxylates. Although this overview reveals that BESs offer new opportunities for the bioproduction of different compounds, there are still challenges that need to be overcome before these systems can be applied on a larger scale.

Graphical Abstract


Biocathode Bioelectrochemical systems Carboxylate Hydrogen Methane 


  1. 1.
    Bond DR, Lovley DR (2003). Appl Environ Microbiol 69:1548–1555PubMedPubMedCentralGoogle Scholar
  2. 2.
    Logan BE, Regan JM (2006). Environ Sci Technol 40:5172–5180PubMedGoogle Scholar
  3. 3.
    Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008). Environ Sci Technol 42:8630–8640PubMedGoogle Scholar
  4. 4.
    Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007). Environ Sci Technol 41:7564–7569PubMedGoogle Scholar
  5. 5.
    Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN (2010). Environ Sci Technol 44:7151–7156PubMedGoogle Scholar
  6. 6.
    Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007). Environ Sci Technol 41:3354–3360PubMedGoogle Scholar
  7. 7.
    Jeremiasse AW, Hamelers HVM, Buisman CJN (2010). Bioelectrochemistry 78:39–43PubMedGoogle Scholar
  8. 8.
    Cheng S, Xing D, Call DF, Logan BE (2009). Environ Sci Technol 43:3953–3958PubMedGoogle Scholar
  9. 9.
    Nevin KP, Woodard TL, Franks AE (2010). MBio 1:e00103–e00110PubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, Steinbusch KJJ, Sleutels THJA, Hamelers HVM, Buisman CJN (2013). ACS Sustain Chem Eng 1:513–518Google Scholar
  11. 11.
    Van Eerten-Jansen MCAA, Ter Heijne A, Buisman CJN, Hamelers HVM (2012). Int J Energy Res 36:809–819Google Scholar
  12. 12.
    Molenaar SD, Mol AR, Sleutels THJA, ter Heijne A, Buisman CJN (2016). Environ Sci Technol Lett 3:144–149Google Scholar
  13. 13.
    Wagemann K, Tippkötter N (2017) Biorefineries: a short introduction. Adv Biochem Eng Biotechnol. Google Scholar
  14. 14.
    Rais D, Zibek S (2017) Biotechnological and biochemical utilization of lignin. Adv Biochem Eng Biotechnol. Google Scholar
  15. 15.
    Rabaey K, Rozendal RA (2010). Nat Rev Microbiol 8:706–716PubMedGoogle Scholar
  16. 16.
    Hegner R, Gutensohn MF, Koch C, Harnisch F (2016). ChemSusChem 10:958–967Google Scholar
  17. 17.
    Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010). Environ Sci Technol 44:513–517PubMedGoogle Scholar
  18. 18.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006). Environ Sci Technol 40:5181–5192PubMedGoogle Scholar
  19. 19.
    Hamelers HVM, Ter Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010). Appl Microbiol Biotechnol 85:1673–1685PubMedGoogle Scholar
  20. 20.
    Thauer RK, Jungermann K, Decker K (1977). Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001). FEMS Microbiol Ecol 38:33–41Google Scholar
  22. 22.
    Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN, Int J (2009). Hydrogen Energy 34:3612–3620 Refs. [20] and [121], [21] and [47], [30] and [85], [30] and [60], [37] and [96] were identical, hence the latter has been removed from the reference list and subsequent references have been renumbered. Please check.Google Scholar
  23. 23.
    Bajracharya S, Ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015). Bioresour Technol 195:14–24PubMedGoogle Scholar
  24. 24.
    Dolfing J (2014). ISME J 8:4–5PubMedGoogle Scholar
  25. 25.
    Van Eerten-Jansen MCAA, Veldhoen AB, Plugge CM, Stams AJM, Buisman CJN, Ter Heijne A (2013). Archaea 2013:481784PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jourdin L, Freguia S, Donose BC, Keller J (2015). Bioelectrochemistry 102:56–63PubMedGoogle Scholar
  27. 27.
    Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Bañeras L, Balaguer MD, Colprim J (2014). Int J Hydrogen Energy 39:1297–1305Google Scholar
  28. 28.
    Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012). Biotechnol Bioeng 109:657–664PubMedGoogle Scholar
  29. 29.
    Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008). Environ Sci Technol 42:629–634PubMedGoogle Scholar
  30. 30.
    Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013). Int J Hydrogen Energy 38:15638–15645Google Scholar
  31. 31.
    Sleutels THJA, Ter Heijne A, Buisman CJN, Hamelers HVM (2013). Int J Hydrogen Energy 38:7201–7208Google Scholar
  32. 32.
    Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011). Bioresour Technol 102:3193–3199PubMedGoogle Scholar
  33. 33.
    Clauwaert P, Verstraete W (2009). Appl Microbiol Biotechnol 82:829–836PubMedGoogle Scholar
  34. 34.
    Villano M, Scardala S, Aulenta F, Majone M (2013). Bioresour Technol 130:366–371PubMedGoogle Scholar
  35. 35.
    Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014). ACS Sustain Chem Eng 2:910–917PubMedPubMedCentralGoogle Scholar
  36. 36.
    Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Balaguer MD, Colprim J (2015). RSC Adv 5:52243–52251Google Scholar
  37. 37.
    Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015). Environ Sci Technol 49:1225–1232PubMedGoogle Scholar
  38. 38.
    Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE (2014). Environ Sci Technol 48:8911–8918PubMedGoogle Scholar
  39. 39.
    Rader GK, Logan BE (2010). Int J Hydrogen Energy 35:8848–8854Google Scholar
  40. 40.
    Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010). Bioresour Technol 101:3085–3090PubMedGoogle Scholar
  41. 41.
    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012). Appl Environ Microbiol 78:8412–8420PubMedPubMedCentralGoogle Scholar
  42. 42.
    Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J (2016). J Chem Technol Biotechnol 91:921–927Google Scholar
  43. 43.
    Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014). J Mater Chem A 2:13093Google Scholar
  44. 44.
    Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013). Int J Hydrogen Energy 38:3497–3502Google Scholar
  45. 45.
    Xafenias N, Mapelli V (2014). Int J Hydrogen Energy 39:21864–21875Google Scholar
  46. 46.
    Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB (2016). Environ Sci Pollut Res 23:22292–22308Google Scholar
  47. 47.
    Patil SA, Arends JBA, Vanwonterghem I, Van Meerbergen J, Guo K, Tyson GW, Rabaey K (2015). Environ Sci Technol 49:8833–8843PubMedGoogle Scholar
  48. 48.
    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013). Environ Sci Technol 47:6023–6029PubMedGoogle Scholar
  49. 49.
    Jourdin L, Freguia S, Flexer V, Keller J (2016). Environ Sci Technol 50:1982–1989PubMedGoogle Scholar
  50. 50.
    LaBelle EV, Marshall CW, Gilbert JA, May HD (2014). PLoS One 9:1–10Google Scholar
  51. 51.
    Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, Chen J, Romano M, Wallace GG, Keller J (2015). Environ Sci Technol 49:13566–13574PubMedGoogle Scholar
  52. 52.
    Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2016). ChemElectroChem 3:581–591Google Scholar
  53. 53.
    Ganigué R, Puig S, Batlle-Vilanova P, Dolors Balaguer M, Colprim J (2015). Chem Commun 51:3235–3238Google Scholar
  54. 54.
    Lu L, Ren NQ, Zhao X, Wang HA, Wu D, Xing DF (2011). Energy Environ Sci 4:1329–1336Google Scholar
  55. 55.
    Ramachandran R (1998). Int J Hydrogen Energy 23:593–598Google Scholar
  56. 56.
    Eklund G, Vonkrusenstierna O (1983). Int J Hydrogen Energy 8:463–470Google Scholar
  57. 57.
    Gielen D, Simbolotti G (2005) Prospects for hydrogen and fuel cells. IEA, Paris, pp 1–256Google Scholar
  58. 58.
    Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011). Appl Microbiol Biotechnol 89:2053–2063PubMedGoogle Scholar
  59. 59.
    Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006). Int J Hydrogen Energy 31:1632–1640Google Scholar
  60. 60.
    Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN (2010). Int J Hydrogen Energy 35:12716–12723Google Scholar
  61. 61.
    Kundu A, Sahu JN, Redzwan G, Hashim MA (2013). Int J Hydrogen Energy 38:1745–1757Google Scholar
  62. 62.
    Munoz LD, Erable B, Etcheverry L, Riess J, Basséguy R, Bergel A (2010). Electrochem Commun 12:183–186Google Scholar
  63. 63.
    De Silva Muñoz L, Bergel A, Féron D, Basséguy R (2010). Int J Hydrogen Energy 35:8561–8568Google Scholar
  64. 64.
    Jeremiasse AW, Hamelers HVM, Kleijn JM, Buisman CJN (2009). Environ Sci Technol 43:6882–6887PubMedGoogle Scholar
  65. 65.
    Popat SC, Ki D, Young MN, Rittmann BE, Torres CI (2014). ChemElectroChem 1:1909–1915Google Scholar
  66. 66.
    Call DF, Merrill MD, Logan BE (2009). Environ Sci Technol 43:2179–2183PubMedGoogle Scholar
  67. 67.
    Selembo PA, Merrill MD, Logan BE (2009). J Power Sources 190:271–278Google Scholar
  68. 68.
    Huang YX, Liu XW, Sun XF, Sheng GP, Zhang YY, Yan GM, Wang SG, Xu AW, Yu HQ (2011). Int J Hydrogen Energy 36:2773–2776Google Scholar
  69. 69.
    Hu H, Fan Y, Liu H (2009). Int J Hydrogen Energy 34:8535–8542Google Scholar
  70. 70.
    Ribot-Llobet E, Nam JY, Tokash JC, Guisasola A, Logan BE (2013). Int J Hydrogen Energy 38:2951–2956Google Scholar
  71. 71.
    Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN, Int J (2009). Hydrogen Energy 34:9655–9661Google Scholar
  72. 72.
    Sleutels THJA, Hamelers HVM, Buisman CJN (2011). Bioresour Technol 102:399–403PubMedGoogle Scholar
  73. 73.
    Tokash JC, Logan BE (2011). Int J Hydrogen Energy 36:9439–9445Google Scholar
  74. 74.
    Zhang Y, Merrill MD, Logan BE (2010). Int J Hydrogen Energy 35:12020–12028Google Scholar
  75. 75.
    Brown RK, Schmidt UC, Harnisch F, Schröder U (2017). J Power Sources 356:473–483Google Scholar
  76. 76.
    Manuel M-F, Neburchilov V, Wang H, Guiot SR, Tartakovsky B (2010). J Power Sources 195:5514–5519Google Scholar
  77. 77.
    Hu H, Fan Y, Liu H (2010). Int J Hydrogen Energy 35:3227–3233Google Scholar
  78. 78.
    Geelhoed JS, Stams AJM (2010). Environ Sci Technol 45:815–820PubMedGoogle Scholar
  79. 79.
    Lojou E, Durand MC, Dolla A, Bianco P (2002). Electroanalysis 14:913–922Google Scholar
  80. 80.
    Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012). ISME J 6:863–874PubMedGoogle Scholar
  81. 81.
    Vignais PM, Colbeau A (2004). Curr Issues Mol Biol 6:159–188PubMedGoogle Scholar
  82. 82.
    Croese E, Jeremiasse AW, Marshall IPG, Spormann AM, Euverink GJW, Geelhoed JS, Stams AJM, Plugge CM (2014). Enzym Microb Technol 61–62:67–75Google Scholar
  83. 83.
    Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016). Trends Biotechnol 34:879–894PubMedGoogle Scholar
  84. 84.
    Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979). Microbiol Rev 43:260–296PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zinder SH, Sowers KR, Ferry JG (1985). Int J Syst Bacteriol 35:522–523Google Scholar
  86. 86.
    Lomans BP, Maas R, Luderer R, Den Camp HJMOP, Pol A, Van Der Drift C, Vogels GD (1999). Appl Environ Microbiol 65:3641–3650PubMedPubMedCentralGoogle Scholar
  87. 87.
    Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008). Appl Microbiol Biotechnol 79:901–913PubMedGoogle Scholar
  88. 88.
    Pham TH, Aelterman P, Verstraete W (2009). Trends Biotechnol 27:168–178PubMedGoogle Scholar
  89. 89.
    Jiang Y, Su M, Li D (2014). Appl Biochem Biotechnol 172:2720–2731PubMedGoogle Scholar
  90. 90.
    Siegert M, Yates MD, Spormann AM, Logan BE (2015). ACS Sustain Chem Eng 3:1668–1676Google Scholar
  91. 91.
    van Eerten-Jansen MCAA, Jansen NC, Plugge CM, de Wilde V, Buisman CJN, ter Heijne A (2014). J Chem Technol Biotechnol 90:963–970Google Scholar
  92. 92.
    Cheng KY, Ho G, Cord-Ruwisch R (2011). Environ Sci Technol 45:796–802PubMedGoogle Scholar
  93. 93.
    Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014). Electrochim Acta 140:191–208Google Scholar
  94. 94.
    Rouleau S et al (2017) RNA G-quadruplexes as key motifs of the transcriptome. Adv Biochem Eng Biotechnol. Google Scholar
  95. 95.
    Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011). Bioresour Technol 102:324–333PubMedGoogle Scholar
  96. 96.
    Deutzmann JS, Sahin M, Spormann AM (2015). MBio 6:1–8Google Scholar
  97. 97.
    Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014). ISME J 8:1673–1681PubMedPubMedCentralGoogle Scholar
  98. 98.
    Yates MD, Siegert M, Logan BE (2014). Int J Hydrogen Energy 39:16841–16851Google Scholar
  99. 99.
    Koch C, Kuchenbuch A, Kretzschmar J, Wedwitschka H, Liebetrau J, Müller S, Harnisch F (2015). RSC Adv 5:31329–31340Google Scholar
  100. 100.
    Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011). Trends Biotechnol 29:70–78PubMedGoogle Scholar
  101. 101.
    Holtzapple MT, Granda CB (2009). Appl Biochem Biotechnol 156:95–106PubMedGoogle Scholar
  102. 102.
    Schievano A, Pepé Sciarria T, Vanbroekoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D (2016). Trends Biotechnol 34:866–878PubMedGoogle Scholar
  103. 103.
    Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016). Trends Biotechnol 34:856–865PubMedGoogle Scholar
  104. 104.
    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011). Appl Environ Microbiol 77:2882–2886PubMedPubMedCentralGoogle Scholar
  105. 105.
    Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015). Energy Environ Sci 8:3731–3744Google Scholar
  106. 106.
    Jajesniak P, Ali HEMO, Wong TS (2014). J Bioprocess Biotech 4:155Google Scholar
  107. 107.
    Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A (2011). Biotechnol Adv 29:949–960PubMedGoogle Scholar
  108. 108.
    Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015). Process Biochem 50:1047–1055Google Scholar
  109. 109.
    Jones DT, Woods DR (1986). Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  110. 110.
    Ganigué R, Sánchez-Paredes P, Bañeras L, Colprim J (2016). Front Microbiol 7:1–11Google Scholar
  111. 111.
    Abubackar HN, Veiga MC, Kennes C (2012). Bioresour Technol 114:518–522PubMedGoogle Scholar
  112. 112.
    Marshall CW, LaBelle EV, May HD (2013). Curr Opin Biotechnol 24:391–397PubMedGoogle Scholar
  113. 113.
    Puig S, Ganigué R, Batlle-Vilanova P, Balaguer MD, Bañeras L, Colprim J (2011). Bioresour Technol 102:4462–4467PubMedGoogle Scholar
  114. 114.
    Beese-Vasbender PF, Grote JP, Garrelfs J, Stratmann M, Mayrhofer KJJ (2015). Bioelectrochemistry 102:50–55PubMedGoogle Scholar
  115. 115.
    Pozo G, Jourdin L, Lu Y, Ledezma P, Keller J, Freguia S (2015). RSC Adv 5:89368–89374Google Scholar
  116. 116.
    De Tissera S et al (2017) Syngas biorefinery and syngas utilization. Adv Biochem Eng Biotechnol. Google Scholar
  117. 117.
    Bagastyo AY, Radjenovic J, Mu Y, Rozendal RA, Batstone DJ, Rabaey K (2011). Water Res 45:4951–4959PubMedGoogle Scholar
  118. 118.
    Sleutels THJA, ter Heijne A, Kuntke P, Buisman CJN, Hamelers HVM (2017). Chemistry Select 2:3462–3470. doi: 10.1002/slct.201700064 Google Scholar
  119. 119.
    Özilgen M (2017) How to decide on modeling details: risk and benefit assessment. Adv Biochem Eng Biotechnol. Google Scholar
  120. 120.
    Kim JR, Cheng S, Oh S-E, Logan BE (2007). Environ Sci Technol 41:1004–1009PubMedGoogle Scholar
  121. 121.
    Rozendal RA, Sleutels THJA, Hamelers HVM, Buisman CJN (2008). Water Sci Technol 57:1757–1762PubMedGoogle Scholar
  122. 122.
    Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, Prévoteau A, Rabaey K (2015). Environ Sci Technol Lett 2:325–328Google Scholar
  123. 123.
    Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, Strik DPBTB, Grootscholten TIM, Buisman CJN, Hamelers HVM (2016). Environ Sci Technol 50:2796–2810PubMedGoogle Scholar
  124. 124.
    Liu H, Grot S, Logan BE (2005). Environ Sci Technol 39:4317–4320PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Annemiek ter Heijne
    • 1
    Email author
  • Florian Geppert
    • 2
    • 3
  • Tom H. J. A. Sleutels
    • 4
  • Pau Batlle-Vilanova
    • 5
    • 6
  • Dandan Liu
    • 1
  • Sebastià Puig
    • 5
  1. 1.Sub-Department of Environmental TechnologyWageningen UniversityWG WageningenThe Netherlands
  2. 2.Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHTOberhausenGermany
  3. 3.Department of Mechanical EngineeringRuhr-University BochumBochumGermany
  4. 4.Wetsus, European Centre of Excellence for Sustainable Water TechnologyMA LeeuwardenThe Netherlands
  5. 5.LEQUiA, Institute of the Environment, University of GironaGironaSpain
  6. 6.Department of Innovation and TechnologyFCC AqualiaBarcelonaSpain

Personalised recommendations