Skip to main content

Anaerobic Digestion

  • Chapter
  • First Online:
Book cover Biorefineries

Abstract

The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and – as the substrate is often waste material – to reduce the organic matter content of the substrate prior to disposal.

Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.

For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas – the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IRENA (2015) http://resourceirena.irena.org/gateway/download. 11.1.2015

  2. Scheftelowitz M et al (2015) Stromerzeugung aus Biomasse Zwischenbericht Mai 2015 DBFZ, download: www.dbfz.de 10.8.2015

  3. FNR (2015) Mediathek. https://mediathek.fnr.de/grafiken/daten-und-fakten/anbau/entwicklung-der-maisanbauflache-in-deutschland.html. download 15.8.2015

  4. Nyns E-J, Nikolausz M, Liebetrau J (2014) Biogas in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Online ISBN: 9783527306732 doi:10.1002/14356007.a16_453.pub2

    Google Scholar 

  5. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551. doi:10.1038/nrmicro925

    Article  CAS  PubMed  Google Scholar 

  6. Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309. doi:10.3168/jds.S0022-0302(01)70159-2

    Article  CAS  PubMed  Google Scholar 

  7. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16. doi:10.1016/S0960-8524(00)00023-7

    Article  CAS  Google Scholar 

  8. Spirito CM, Richter H, Rabaey K, et al. (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122. doi:10.1016/j.copbio.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Thauer R, Jungermann K, Decker K (1977) Energy-conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wellinger A, Murphy J, Baxter D (eds) (2013) The biogas handbook: science, production and application. Woodhead Publishing. ISBN: 9780857094988

    Google Scholar 

  11. FNR (2013) Leitfaden biogas, 6th edn. Gülzow, FNR

    Google Scholar 

  12. Luo G, Johansson S, Boe K, et al. (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109:1088–1094. doi:10.1002/bit.24360

    Article  CAS  PubMed  Google Scholar 

  13. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi:10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  14. Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79. doi:10.1016/j.apenergy.2013.04.080

    Article  CAS  Google Scholar 

  15. Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H-2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381. doi:10.1007/s00253-012-4547-5

    Article  CAS  PubMed  Google Scholar 

  16. Youngsukkasem S, Chandolias K, Taherzadeh MJ (2015) Rapid bio-methanation of syngas in a reverse membrane bioreactor: membrane encased microorganisms. Bioresour Technol 178:334–340. doi:10.1016/j.biortech.2014.07.071

    Article  CAS  PubMed  Google Scholar 

  17. Wandrey C, Aivasidis A (1983) Zur Reaktionstechnik der anaeroben Fermentation. Chem Ing Tech 55:516–524. doi:10.1002/cite.330550705

    Article  CAS  Google Scholar 

  18. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. doi:10.1039/C4EE03359K

    Article  CAS  Google Scholar 

  19. Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398. doi:10.1016/j.biortech.2014.09.127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Liebetrau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liebetrau, J., Sträuber, H., Kretzschmar, J., Denysenko, V., Nelles, M. (2017). Anaerobic Digestion. In: Wagemann, K., Tippkötter, N. (eds) Biorefineries. Advances in Biochemical Engineering/Biotechnology, vol 166. Springer, Cham. https://doi.org/10.1007/10_2016_67

Download citation

Publish with us

Policies and ethics